001/* 002 * $Id: FactorRationalTest.java 5863 2018-07-20 11:13:34Z kredel $ 003 */ 004 005package edu.jas.ufd; 006 007import java.util.SortedMap; 008 009 010import junit.framework.Test; 011import junit.framework.TestCase; 012import junit.framework.TestSuite; 013 014import edu.jas.arith.BigRational; 015import edu.jas.kern.ComputerThreads; 016import edu.jas.poly.GenPolynomial; 017import edu.jas.poly.GenPolynomialRing; 018import edu.jas.poly.TermOrder; 019 020 021/** 022 * Factor rational tests with JUnit. 023 * @author Heinz Kredel 024 */ 025 026public class FactorRationalTest extends TestCase { 027 028 029 /** 030 * main. 031 */ 032 public static void main(String[] args) { 033 junit.textui.TestRunner.run(suite()); 034 } 035 036 037 /** 038 * Constructs a <CODE>FactorRationalTest</CODE> object. 039 * @param name String. 040 */ 041 public FactorRationalTest(String name) { 042 super(name); 043 } 044 045 046 /** 047 */ 048 public static Test suite() { 049 TestSuite suite = new TestSuite(FactorRationalTest.class); 050 return suite; 051 } 052 053 054 int rl = 3; 055 056 057 int kl = 5; 058 059 060 int ll = 5; 061 062 063 int el = 3; 064 065 066 float q = 0.3f; 067 068 069 @Override 070 protected void setUp() { 071 } 072 073 074 @Override 075 protected void tearDown() { 076 ComputerThreads.terminate(); 077 } 078 079 080 /** 081 * Test dummy for Junit. 082 */ 083 public void testDummy() { 084 } 085 086 087 /** 088 * Test rational univariate factorization. 089 */ 090 public void testRationalFactorization() { 091 TermOrder to = new TermOrder(TermOrder.INVLEX); 092 BigRational cfac = new BigRational(1); 093 GenPolynomialRing<BigRational> pfac = new GenPolynomialRing<BigRational>(cfac, 1, to); 094 FactorRational fac = new FactorRational(); 095 096 for (int i = 1; i < 3; i++) { 097 int facs = 0; 098 GenPolynomial<BigRational> a; 099 GenPolynomial<BigRational> c = pfac.random(kl - 2, ll * i, el + i, q); 100 // a = a.monic(); 101 GenPolynomial<BigRational> b = pfac.random(kl - 2, ll, el, q); 102 //b = b.monic(); 103 // if ( false && ! a.leadingBaseCoefficient().isONE() ) { 104 //continue; 105 //ExpVector e = a.leadingExpVector(); 106 //a.doPutToMap(e,cfac.getONE()); 107 //} 108 if (b.isZERO() || c.isZERO()) { 109 continue; 110 } 111 if (c.degree() > 0) { 112 facs++; 113 } 114 if (b.degree() > 0) { 115 facs++; 116 } 117 a = c.multiply(b); 118 //System.out.println("\na = " + a); 119 //System.out.println("b = " + b); 120 //System.out.println("c = " + c); 121 122 SortedMap<GenPolynomial<BigRational>, Long> sm = fac.baseFactors(a); 123 //System.out.println("\na = " + a); 124 //System.out.println("sm = " + sm); 125 if (sm.size() >= facs) { 126 assertTrue("#facs < " + facs, sm.size() >= facs); 127 } else { 128 long sf = 0; 129 for (Long e : sm.values()) { 130 sf += e; 131 } 132 assertTrue("#facs < " + facs + ", b = " + b + ", c = " + c + ", sm = " + sm, sf >= facs); 133 } 134 boolean t = fac.isFactorization(a, sm); 135 //System.out.println("t = " + t); 136 assertTrue("prod(factor(a)) = a", t); 137 } 138 } 139 140 141 /** 142 * Test rational multivariate factorization. 143 */ 144 public void testRationalMultiFactorization() { 145 TermOrder to = new TermOrder(TermOrder.INVLEX); 146 BigRational cfac = new BigRational(1); 147 GenPolynomialRing<BigRational> pfac = new GenPolynomialRing<BigRational>(cfac, 2, to); 148 FactorRational fac = new FactorRational(); 149 150 for (int i = 1; i < 3; i++) { 151 int facs = 0; 152 GenPolynomial<BigRational> a; 153 GenPolynomial<BigRational> c = pfac.random(kl - 2, ll * i, el + i, q); 154 // a = a.monic(); 155 GenPolynomial<BigRational> b = pfac.random(kl - 2, ll, el, q); 156 //b = b.monic(); 157 // if ( false && ! a.leadingBaseCoefficient().isONE() ) { 158 //continue; 159 //ExpVector e = a.leadingExpVector(); 160 //a.doPutToMap(e,cfac.getONE()); 161 //} 162 if (b.isZERO() || c.isZERO()) { 163 continue; 164 } 165 if (c.degree() > 0) { 166 facs++; 167 } 168 if (b.degree() > 0) { 169 facs++; 170 } 171 a = c.multiply(b); 172 //System.out.println("\na = " + a); 173 //System.out.println("b = " + b); 174 //System.out.println("c = " + c); 175 176 SortedMap<GenPolynomial<BigRational>, Long> sm = fac.factors(a); 177 //System.out.println("\na = " + a); 178 //System.out.println("sm = " + sm); 179 if (sm.size() >= facs) { 180 assertTrue("#facs < " + facs, sm.size() >= facs); 181 } else { 182 long sf = 0; 183 for (Long e : sm.values()) { 184 sf += e; 185 } 186 assertTrue("#facs < " + facs + ", b = " + b + ", c = " + c + ", sm = " + sm, sf >= facs); 187 } 188 boolean t = fac.isFactorization(a, sm); 189 //System.out.println("t = " + t); 190 assertTrue("prod(factor(a)) = a", t); 191 } 192 } 193 194 195 /** 196 * Test rational absolute factorization. 197 */ 198 public void testBaseRationalAbsoluteFactorization() { 199 TermOrder to = new TermOrder(TermOrder.INVLEX); 200 BigRational cfac = new BigRational(1); 201 String[] alpha = new String[] { "alpha" }; 202 //String[] vars = new String[] { "z" }; 203 GenPolynomialRing<BigRational> pfac = new GenPolynomialRing<BigRational>(cfac, 1, to, alpha); 204 GenPolynomial<BigRational> agen = pfac.univariate(0, 4); 205 agen = agen.sum(pfac.fromInteger(4)); // x^4 + 4 206 207 FactorRational engine = new FactorRational(); 208 209 FactorsMap<BigRational> F 210 //= engine.baseFactorsAbsoluteSquarefree(agen); 211 //= engine.baseFactorsAbsoluteIrreducible(agen); 212 = engine.baseFactorsAbsolute(agen); 213 //System.out.println("agen = " + agen); 214 //System.out.println("F = " + F); 215 216 boolean t = engine.isAbsoluteFactorization(F); 217 //System.out.println("t = " + t); 218 assertTrue("prod(factor(a)) = a", t); 219 } 220 221 222 /** 223 * Test rational absolute factorization. 224 */ 225 public void testRationalAbsoluteFactorization() { 226 TermOrder to = new TermOrder(TermOrder.INVLEX); 227 BigRational cfac = new BigRational(1); 228 String[] vars = new String[] { "x", "y" }; 229 GenPolynomialRing<BigRational> pfac = new GenPolynomialRing<BigRational>(cfac, 2, to, vars); 230 GenPolynomial<BigRational> xp = pfac.univariate(0, 2); 231 GenPolynomial<BigRational> yp = pfac.univariate(1, 2); 232 GenPolynomial<BigRational> g = xp.sum(yp); // x^2 + y^2 233 //GenPolynomial<BigRational> g = xp.subtract(yp); // x^2 - y^2 234 235 FactorRational engine = new FactorRational(); 236 237 FactorsMap<BigRational> F 238 //= engine.baseFactorsAbsoluteSquarefree(agen); 239 //= engine.baseFactorsAbsoluteIrreducible(agen); 240 = engine.factorsAbsolute(g); 241 //System.out.println("g = " + g); 242 //System.out.println("F = " + F); 243 244 boolean t = engine.isAbsoluteFactorization(F); 245 //System.out.println("t = " + t); 246 assertTrue("prod(factor(a)) = a", t); 247 } 248 249}