001/* 002 * $Id: RealAlgebraicTest.java 5939 2018-10-19 08:50:12Z kredel $ 003 */ 004 005package edu.jas.root; 006 007 008import java.util.ArrayList; 009import java.util.List; 010 011 012import edu.jas.arith.BigDecimal; 013import edu.jas.arith.BigRational; 014import edu.jas.poly.PolyUtil; 015import edu.jas.poly.GenPolynomial; 016import edu.jas.poly.GenPolynomialRing; 017import edu.jas.structure.NotInvertibleException; 018import edu.jas.structure.Power; 019 020import junit.framework.Test; 021import junit.framework.TestCase; 022import junit.framework.TestSuite; 023 024 025/** 026 * RealAlgebraicNumber Test using JUnit. 027 * @author Heinz Kredel 028 */ 029 030public class RealAlgebraicTest extends TestCase { 031 032 033 /** 034 * main. 035 */ 036 public static void main(String[] args) { 037 junit.textui.TestRunner.run(suite()); 038 } 039 040 041 /** 042 * Constructs a <CODE>RealAlgebraicTest</CODE> object. 043 * @param name String. 044 */ 045 public RealAlgebraicTest(String name) { 046 super(name); 047 } 048 049 050 /** 051 * suite. 052 */ 053 public static Test suite() { 054 TestSuite suite = new TestSuite(RealAlgebraicTest.class); 055 return suite; 056 } 057 058 059 RealAlgebraicRing<BigRational> fac; 060 061 062 GenPolynomialRing<BigRational> mfac; 063 064 065 RealAlgebraicNumber<BigRational> a, b, c, d, e; 066 067 068 RealAlgebraicNumber<BigRational> alpha; 069 070 071 int rl = 1; 072 073 074 int kl = 10; 075 076 077 int ll = 10; 078 079 080 int el = ll; 081 082 083 float q = 0.5f; 084 085 086 @Override 087 protected void setUp() { 088 a = b = c = d = e = null; 089 BigRational l = new BigRational(1); 090 BigRational r = new BigRational(2); 091 Interval<BigRational> positiv = new Interval<BigRational>(l, r); 092 String[] vars = new String[] { "alpha" }; 093 mfac = new GenPolynomialRing<BigRational>(new BigRational(1), rl, vars); 094 GenPolynomial<BigRational> mo = mfac.univariate(0, 2); 095 mo = mo.subtract(mfac.fromInteger(2)); // alpha^2 -2 096 fac = new RealAlgebraicRing<BigRational>(mo, positiv); 097 alpha = fac.getGenerator(); 098 } 099 100 101 @Override 102 protected void tearDown() { 103 a = b = c = d = e = null; 104 fac = null; 105 alpha = null; 106 } 107 108 109 /** 110 * Test constructor and toString. 111 * 112 */ 113 public void testConstruction() { 114 c = fac.getONE(); 115 //System.out.println("c = " + c); 116 //System.out.println("c.getVal() = " + c.getVal()); 117 assertTrue("length( c ) = 1", c.number.getVal().length() == 1); 118 assertTrue("isZERO( c )", !c.isZERO()); 119 assertTrue("isONE( c )", c.isONE()); 120 121 d = fac.getZERO(); 122 //System.out.println("d = " + d); 123 //System.out.println("d.getVal() = " + d.getVal()); 124 assertTrue("length( d ) = 0", d.number.getVal().length() == 0); 125 assertTrue("isZERO( d )", d.isZERO()); 126 assertTrue("isONE( d )", !d.isONE()); 127 } 128 129 130 /** 131 * Test random polynomial. 132 */ 133 public void testRandom() { 134 for (int i = 0; i < 7; i++) { 135 a = fac.random(el); 136 //System.out.println("a = " + a); 137 if (a.isZERO() || a.isONE()) { 138 continue; 139 } 140 // fac.random(kl*(i+1), ll+2*i, el+i, q ); 141 assertTrue("length( a" + i + " ) <> 0", a.number.getVal().length() >= 0); 142 assertTrue(" not isZERO( a" + i + " )", !a.isZERO()); 143 assertTrue(" not isONE( a" + i + " )", !a.isONE()); 144 } 145 } 146 147 148 /** 149 * Test addition. 150 */ 151 public void testAddition() { 152 a = fac.random(ll); 153 b = fac.random(ll); 154 155 c = a.sum(b); 156 d = c.subtract(b); 157 assertEquals("a+b-b = a", a, d); 158 159 c = a.sum(b); 160 d = b.sum(a); 161 assertEquals("a+b = b+a", c, d); 162 163 c = fac.random(ll); 164 d = c.sum(a.sum(b)); 165 e = c.sum(a).sum(b); 166 assertEquals("c+(a+b) = (c+a)+b", d, e); 167 168 169 c = a.sum(fac.getZERO()); 170 d = a.subtract(fac.getZERO()); 171 assertEquals("a+0 = a-0", c, d); 172 173 c = fac.getZERO().sum(a); 174 d = fac.getZERO().subtract(a.negate()); 175 assertEquals("0+a = 0+(-a)", c, d); 176 } 177 178 179 /** 180 * Test multiplication. 181 */ 182 public void testMultiplication() { 183 a = fac.random(ll); 184 assertTrue("not isZERO( a )", !a.isZERO()); 185 186 b = fac.random(ll); 187 assertTrue("not isZERO( b )", !b.isZERO()); 188 189 c = b.multiply(a); 190 d = a.multiply(b); 191 assertTrue("not isZERO( c )", !c.isZERO()); 192 assertTrue("not isZERO( d )", !d.isZERO()); 193 194 //System.out.println("a = " + a); 195 //System.out.println("b = " + b); 196 e = d.subtract(c); 197 assertTrue("isZERO( a*b-b*a ) " + e, e.isZERO()); 198 199 assertTrue("a*b = b*a", c.equals(d)); 200 assertEquals("a*b = b*a", c, d); 201 202 c = fac.random(ll); 203 //System.out.println("c = " + c); 204 d = a.multiply(b.multiply(c)); 205 e = (a.multiply(b)).multiply(c); 206 207 //System.out.println("d = " + d); 208 //System.out.println("e = " + e); 209 210 //System.out.println("d-e = " + d.subtract(c) ); 211 212 assertEquals("a(bc) = (ab)c", d, e); 213 assertTrue("a(bc) = (ab)c", d.equals(e)); 214 215 c = a.multiply(fac.getONE()); 216 d = fac.getONE().multiply(a); 217 assertEquals("a*1 = 1*a", c, d); 218 219 c = a.inverse(); 220 d = c.multiply(a); 221 //System.out.println("a = " + a); 222 //System.out.println("c = " + c); 223 //System.out.println("d = " + d); 224 assertEquals("a*1/a = 1", fac.getONE(), d); 225 226 try { 227 a = fac.getZERO().inverse(); 228 fail("0 invertible"); 229 } catch (NotInvertibleException expected) { 230 // pass 231 } 232 } 233 234 235 /** 236 * Test distributive law. 237 */ 238 public void testDistributive() { 239 a = fac.random(ll); 240 b = fac.random(ll); 241 c = fac.random(ll); 242 243 d = a.multiply(b.sum(c)); 244 e = a.multiply(b).sum(a.multiply(c)); 245 246 assertEquals("a(b+c) = ab+ac", d, e); 247 } 248 249 250 /** 251 * Test sign of real algebraic numbers. 252 */ 253 public void testSignum() { 254 a = fac.random(ll); 255 b = fac.random(ll); 256 c = fac.random(ll); 257 258 int sa = a.signum(); 259 int sb = b.signum(); 260 int sc = c.signum(); 261 262 d = a.multiply(b); 263 e = a.multiply(c); 264 265 int sd = d.signum(); 266 int se = e.signum(); 267 268 assertEquals("sign(a*b) = sign(a)*sign(b) ", sa * sb, sd); 269 assertEquals("sign(a*c) = sign(a)*sign(c) ", sa * sc, se); 270 271 b = a.negate(); 272 sb = b.signum(); 273 assertEquals("sign(-a) = -sign(a) ", -sa, sb); 274 } 275 276 277 /** 278 * Test compareTo of real algebraic numbers. 279 */ 280 public void testCompare() { 281 a = fac.random(ll).abs(); 282 b = a.sum(fac.getONE()); 283 c = b.sum(fac.getONE()); 284 285 int ab = a.compareTo(b); 286 int bc = b.compareTo(c); 287 int ac = a.compareTo(c); 288 289 assertTrue("a < a+1 ", ab < 0); 290 assertTrue("a+1 < a+2 ", bc < 0); 291 assertTrue("a < a+2 ", ac < 0); 292 293 a = a.negate(); 294 b = a.sum(fac.getONE()); 295 c = b.sum(fac.getONE()); 296 297 ab = a.compareTo(b); 298 bc = b.compareTo(c); 299 ac = a.compareTo(c); 300 301 assertTrue("a < a+1 ", ab < 0); 302 assertTrue("a+1 < a+2 ", bc < 0); 303 assertTrue("a < a+2 ", ac < 0); 304 } 305 306 307 /** 308 * Test arithmetic of magnitude of real algebraic numbers. 309 */ 310 public void testMagnitude() { 311 a = fac.random(ll); 312 b = fac.random(ll); 313 c = fac.random(ll); 314 315 //BigDecimal ad = new BigDecimal(a.magnitude()); 316 //BigDecimal bd = new BigDecimal(b.magnitude()); 317 //BigDecimal cd = new BigDecimal(c.magnitude()); 318 319 d = a.multiply(b); 320 e = a.sum(b); 321 322 BigDecimal dd = new BigDecimal(d.magnitude()); 323 BigDecimal ed = new BigDecimal(e.magnitude()); 324 325 BigDecimal dd1 = new BigDecimal(a.magnitude().multiply(b.magnitude())); 326 BigDecimal ed1 = new BigDecimal(a.magnitude().sum(b.magnitude())); 327 328 //System.out.println("ad = " + ad); 329 //System.out.println("bd = " + bd); 330 //System.out.println("cd = " + cd); 331 //System.out.println("dd = " + dd); 332 //System.out.println("dd1 = " + dd1); 333 //System.out.println("ed = " + ed); 334 //System.out.println("ed1 = " + ed1); 335 336 //BigRational eps = Power.positivePower(new BigRational(1L,10L),BigDecimal.DEFAULT_PRECISION); 337 BigRational eps = Power.positivePower(new BigRational(1L, 10L), 8); 338 BigDecimal epsd = new BigDecimal(eps); 339 340 BigDecimal rel = dd.abs().sum(dd1.abs()); 341 BigDecimal err = dd.subtract(dd1).abs().divide(rel); 342 //System.out.println("rel = " + rel); 343 //System.out.println("|dd-dd1|/rel = " + err + ", eps = " + epsd); 344 assertTrue("mag(a*b) = mag(a)*mag(b): " + dd + ", " + dd1, 345 err.compareTo(epsd) <= 0); 346 assertTrue("mag(a+b) = mag(a)+mag(b): " + ed + ", " + ed1, 347 ed.subtract(ed1).abs().compareTo(epsd) <= 0); 348 349 350 d = a.divide(b); 351 e = a.subtract(b); 352 353 dd = new BigDecimal(d.magnitude()); 354 ed = new BigDecimal(e.magnitude()); 355 356 dd1 = new BigDecimal(a.magnitude().divide(b.magnitude())); 357 ed1 = new BigDecimal(a.magnitude().subtract(b.magnitude())); 358 359 //System.out.println("dd = " + dd); 360 //System.out.println("dd1 = " + dd1); 361 //System.out.println("ed = " + ed); 362 //System.out.println("ed1 = " + ed1); 363 364 assertTrue("mag(a/b) = mag(a)/mag(b)", dd.subtract(dd1).abs().compareTo(epsd) <= 0); 365 assertTrue("mag(a-b) = mag(a)-mag(b)", ed.subtract(ed1).abs().compareTo(epsd) <= 0); 366 } 367 368 369 /** 370 * Test real root isolation. 371 */ 372 public void testRealRootIsolation() { 373 //System.out.println(); 374 GenPolynomialRing<RealAlgebraicNumber<BigRational>> dfac; 375 dfac = new GenPolynomialRing<RealAlgebraicNumber<BigRational>>(fac, 1); 376 377 GenPolynomial<RealAlgebraicNumber<BigRational>> ar; 378 ar = dfac.random(3, 5, 7, q); 379 //System.out.println("ar = " + ar); 380 if (ar.degree() % 2 == 0) { // ensure existence of a root 381 ar = ar.multiply(dfac.univariate(0)); 382 } 383 //System.out.println("ar = " + ar); 384 385 RealRoots<RealAlgebraicNumber<BigRational>> rrr = new RealRootsSturm<RealAlgebraicNumber<BigRational>>(); 386 List<Interval<RealAlgebraicNumber<BigRational>>> R = rrr.realRoots(ar); 387 //System.out.println("R = " + R); 388 assertTrue("#roots >= 0 ", R.size() > 0 ); 389 390 BigRational eps = Power.positivePower(new BigRational(1L, 10L), BigDecimal.DEFAULT_PRECISION); 391 BigDecimal epsd = new BigDecimal(Power.positivePower(new BigRational(1L,10L), 14 - ar.degree())); // less 392 //System.out.println("eps = " + epsd); 393 394 R = rrr.refineIntervals(R, ar, eps); 395 //System.out.println("R = " + R); 396 for (Interval<RealAlgebraicNumber<BigRational>> v : R) { 397 RealAlgebraicNumber<BigRational> m = v.middle(); 398 //System.out.println("m = " + m); 399 RealAlgebraicNumber<BigRational> n; 400 n = PolyUtil.<RealAlgebraicNumber<BigRational>> evaluateMain(fac, ar, m); 401 //System.out.println("n = " + n); 402 BigRational nr = n.magnitude(); 403 //System.out.println("nr = " + nr); 404 BigDecimal nd = new BigDecimal(nr); 405 //System.out.println("nd = " + nd); 406 assertTrue("|nd| < eps: " + nd + " " + epsd, nd.abs().compareTo(epsd) <= 0); 407 //no: assertTrue("n == 0: " + n, n.isZERO()); 408 } 409 } 410 411 412 /** 413 * Test real root isolation for Wilkinson like polynomials. 414 * product_{i=1..n}( x - i * alpha ) 415 */ 416 public void testRealRootIsolationWilkinson() { 417 //System.out.println(); 418 GenPolynomialRing<RealAlgebraicNumber<BigRational>> dfac; 419 dfac = new GenPolynomialRing<RealAlgebraicNumber<BigRational>>(fac, 1); 420 421 GenPolynomial<RealAlgebraicNumber<BigRational>> ar, br, cr, dr, er; 422 423 RealRoots<RealAlgebraicNumber<BigRational>> rrr = new RealRootsSturm<RealAlgebraicNumber<BigRational>>(); 424 425 final int N = 3; 426 dr = dfac.getONE(); 427 er = dfac.univariate(0); 428 429 List<Interval<RealAlgebraicNumber<BigRational>>> Rn; 430 Rn = new ArrayList<Interval<RealAlgebraicNumber<BigRational>>>( 431 N); 432 ar = dr; 433 for (int i = 0; i < N; i++) { 434 cr = dfac.fromInteger(i).multiply(alpha); // i * alpha 435 Rn.add(new Interval<RealAlgebraicNumber<BigRational>>(cr.leadingBaseCoefficient())); 436 br = er.subtract(cr); // ( x - i * alpha ) 437 ar = ar.multiply(br); 438 } 439 //System.out.println("ar = " + ar); 440 441 List<Interval<RealAlgebraicNumber<BigRational>>> R = rrr.realRoots(ar); 442 //System.out.println("R = " + R); 443 444 assertTrue("#roots = " + N + " ", R.size() == N); 445 446 BigRational eps = Power.positivePower(new BigRational(1L, 10L), BigDecimal.DEFAULT_PRECISION); 447 //BigRational eps = Power.positivePower(new BigRational(1L,10L),10); 448 //System.out.println("eps = " + eps); 449 450 R = rrr.refineIntervals(R, ar, eps); 451 //System.out.println("R = " + R); 452 int i = 0; 453 for (Interval<RealAlgebraicNumber<BigRational>> v : R) { 454 BigDecimal dd = v.toDecimal();//.sum(eps1); 455 BigDecimal di = Rn.get(i++).toDecimal(); 456 //System.out.println("v = " + dd); 457 //System.out.println("vi = " + di); 458 assertTrue("|dd - di| < eps ", dd.compareTo(di) == 0); 459 } 460 } 461 462}