001 /*
002 * $Id: Factorization.java 3068 2010-04-11 17:27:16Z kredel $
003 */
004
005 package edu.jas.ufd;
006
007
008 import java.io.Serializable;
009 import java.util.List;
010 import java.util.SortedMap;
011
012 import edu.jas.poly.GenPolynomial;
013 import edu.jas.structure.GcdRingElem;
014
015
016 /**
017 * Factorization algorithms interface.
018 * @usage To create objects that implement the <code>Factorization</code>
019 * interface use the <code>FactorFactory</code>. It will select an
020 * appropriate implementation based on the types of polynomial
021 * coefficients C. To obtain an implementation use
022 * <code>getImplementation()</code>, it returns an object of a class
023 * which extends the <code>FactorAbstract</code> class which implements
024 * the <code>Factorization</code> interface.
025 *
026 * <pre>
027 * Factorization<CT> engine;
028 * engine = FactorFactory.<CT> getImplementation(cofac);
029 * c = engine.factors(a);
030 * </pre>
031 *
032 * For example, if the coefficient type is BigInteger, the usage looks
033 * like
034 *
035 * <pre>
036 * BigInteger cofac = new BigInteger();
037 * Factorization<BigInteger> engine;
038 * engine = FactorFactory.getImplementation(cofac);
039 * Sm = engine.factors(poly);
040 * </pre>
041 *
042 * @see edu.jas.ufd.FactorFactory#getImplementation
043 * @author Heinz Kredel
044 * @param <C> coefficient type
045 */
046
047 public interface Factorization<C extends GcdRingElem<C>> extends Serializable {
048
049
050 /**
051 * GenPolynomial test if is irreducible.
052 * @param P GenPolynomial.
053 * @return true if P is irreducible, else false.
054 */
055 public boolean isIrreducible(GenPolynomial<C> P);
056
057
058 /**
059 * GenPolynomial test if a non trivial factorization exsists.
060 * @param P GenPolynomial.
061 * @return true if P is reducible, else false.
062 */
063 public boolean isReducible(GenPolynomial<C> P);
064
065
066 /**
067 * GenPolynomial test if is squarefree.
068 * @param P GenPolynomial.
069 * @return true if P is squarefree, else false.
070 */
071 public boolean isSquarefree(GenPolynomial<C> P);
072
073
074 /**
075 * GenPolynomial factorization of a squarefree polynomial.
076 * @param P squarefree and primitive! or monic! GenPolynomial.
077 * @return [p_1,...,p_k] with P = prod_{i=1,...,r} p_i.
078 */
079 public List<GenPolynomial<C>> factorsSquarefree(GenPolynomial<C> P);
080
081
082 /**
083 * GenPolynomial factorization.
084 * @param P GenPolynomial.
085 * @return [p_1 -> e_1, ..., p_k -> e_k] with P = prod_{i=1,...,k} p_i**e_i.
086 */
087 public SortedMap<GenPolynomial<C>, Long> factors(GenPolynomial<C> P);
088
089
090 /**
091 * GenPolynomial factorization ignoring multiplicities.
092 * @param P GenPolynomial.
093 * @return [p_1, ..., p_k] with P = prod_{i=1,...,k} p_i**{e_i} for some e_i.
094 */
095 public List<GenPolynomial<C>> factorsRadical(GenPolynomial<C> P);
096
097
098 /**
099 * GenPolynomial greatest squarefree divisor.
100 * @param P GenPolynomial.
101 * @return squarefree(P).
102 */
103 public GenPolynomial<C> squarefreePart(GenPolynomial<C> P);
104
105
106 /**
107 * GenPolynomial squarefree factorization.
108 * @param P GenPolynomial.
109 * @return [p_1 -> e_1, ..., p_k -> e_k] with P = prod_{i=1,...,k} p_i^{e_i}
110 * and p_i squarefree.
111 */
112 public SortedMap<GenPolynomial<C>, Long> squarefreeFactors(GenPolynomial<C> P);
113
114
115 /**
116 * GenPolynomial is factorization.
117 * @param P GenPolynomial
118 * @param F = [p_1,...,p_k].
119 * @return true if P = prod_{i=1,...,r} p_i, else false.
120 */
121 public boolean isFactorization(GenPolynomial<C> P, List<GenPolynomial<C>> F);
122
123
124 /**
125 * GenPolynomial is factorization.
126 * @param P GenPolynomial.
127 * @param F = [p_1 -> e_1, ..., p_k -> e_k].
128 * @return true if P = prod_{i=1,...,k} p_i**e_i , else false.
129 */
130 public boolean isFactorization(GenPolynomial<C> P, SortedMap<GenPolynomial<C>, Long> F);
131
132 }