001 /*
002 * $Id: FactorAlgebraicTest.java 3295 2010-08-26 17:01:10Z kredel $
003 */
004
005 package edu.jas.ufd;
006
007
008 import java.util.SortedMap;
009
010 import junit.framework.Test;
011 import junit.framework.TestCase;
012 import junit.framework.TestSuite;
013
014 import edu.jas.arith.BigRational;
015 import edu.jas.kern.ComputerThreads;
016 import edu.jas.poly.AlgebraicNumber;
017 import edu.jas.poly.AlgebraicNumberRing;
018 import edu.jas.poly.GenPolynomial;
019 import edu.jas.poly.GenPolynomialRing;
020 import edu.jas.poly.TermOrder;
021
022
023 /**
024 * Factor algebraic tests with JUnit.
025 * @author Heinz Kredel.
026 */
027
028 public class FactorAlgebraicTest extends TestCase {
029
030
031 /**
032 * main.
033 */
034 public static void main(String[] args) {
035 //BasicConfigurator.configure();
036 junit.textui.TestRunner.run(suite());
037 }
038
039
040 /**
041 * Constructs a <CODE>FactorAlgebraicTest</CODE> object.
042 * @param name String.
043 */
044 public FactorAlgebraicTest(String name) {
045 super(name);
046 }
047
048
049 /**
050 */
051 public static Test suite() {
052 TestSuite suite = new TestSuite(FactorAlgebraicTest.class);
053 return suite;
054 }
055
056
057 int rl = 3;
058
059
060 int kl = 5;
061
062
063 int ll = 5;
064
065
066 int el = 3;
067
068
069 float q = 0.3f;
070
071
072 @Override
073 protected void setUp() {
074 }
075
076
077 @Override
078 protected void tearDown() {
079 ComputerThreads.terminate();
080 }
081
082
083 /**
084 * Test dummy for Junit.
085 *
086 */
087 public void testDummy() {
088 }
089
090
091 /**
092 * Test algebraic factorization.
093 *
094 */
095 public void testAlgebraicFactorization() {
096
097 TermOrder to = new TermOrder(TermOrder.INVLEX);
098 BigRational cfac = new BigRational(1);
099 String[] alpha = new String[] { "alpha" };
100 String[] vars = new String[] { "z" };
101 GenPolynomialRing<BigRational> pfac = new GenPolynomialRing<BigRational>(cfac, 1, to, alpha);
102 GenPolynomial<BigRational> agen = pfac.univariate(0, 2);
103 agen = agen.sum(pfac.getONE()); // x^2 + 1
104 AlgebraicNumberRing<BigRational> afac = new AlgebraicNumberRing<BigRational>(agen, true);
105 GenPolynomialRing<AlgebraicNumber<BigRational>> apfac = new GenPolynomialRing<AlgebraicNumber<BigRational>>(
106 afac, 1, to, vars); // univariate
107
108 //System.out.println("agen = " + agen);
109 //System.out.println("afac = " + afac);
110 //System.out.println("apfac = " + apfac);
111
112 FactorAlgebraic<BigRational> fac = new FactorAlgebraic<BigRational>(afac);
113
114 for (int i = 1; i < 2; i++) {
115 int facs = 0;
116 GenPolynomial<AlgebraicNumber<BigRational>> a;
117 GenPolynomial<AlgebraicNumber<BigRational>> c = apfac.random(2, ll + i, el + i, q);
118 //a = a.monic();
119 GenPolynomial<AlgebraicNumber<BigRational>> b = apfac.random(2, ll + i, el + i, q);
120 if (b.degree() == 0) {
121 b = b.multiply(apfac.univariate(0));
122 }
123 //b = b.monic();
124 //if ( false && ! a.leadingBaseCoefficient().isONE() ) {
125 //continue;
126 //ExpVector e = a.leadingExpVector();
127 //a.doPutToMap(e,cfac.getONE());
128 //}
129 if (c.degree() > 0) {
130 facs++;
131 }
132 if (b.degree() > 0) {
133 facs++;
134 }
135 //a = apfac.univariate(0,2).sum( apfac.getONE() ); // x^2 + 1
136 //a = a.multiply(a);
137 //a = a.multiply( apfac.univariate(0,2).subtract( apfac.getONE() ) ); // x^2 - 1
138 //a = apfac.univariate(0,3).subtract( apfac.getONE() ); // x^3 - 1
139 //a = apfac.univariate(0,3).sum( apfac.getONE() ); // x^3 + 1
140 a = c.multiply(b);
141 //a = a.monic();
142 //System.out.println("\na = " + a);
143 //System.out.println("b = " + b.monic());
144 //System.out.println("c = " + c.monic());
145
146 SortedMap<GenPolynomial<AlgebraicNumber<BigRational>>, Long> sm = fac.baseFactors(a);
147 //System.out.println("\na = " + a);
148 //System.out.println("sm = " + sm);
149 if (sm.size() >= facs) {
150 assertTrue("#facs < " + facs, sm.size() >= facs);
151 } else {
152 System.out.println("sm.size() < facs = " + facs);
153 }
154 boolean t = fac.isFactorization(a, sm);
155 //System.out.println("t = " + t);
156 assertTrue("prod(factor(a)) = a", t);
157 }
158 }
159
160 }