001 /*
002 * $Id: RatGenSolvablePolynomialTest.java 1255 2007-07-29 10:16:33Z kredel $
003 */
004
005 package edu.jas.poly;
006
007 import junit.framework.Test;
008 import junit.framework.TestCase;
009 import junit.framework.TestSuite;
010
011 import org.apache.log4j.BasicConfigurator;
012
013 import edu.jas.arith.BigRational;
014
015
016 /**
017 * BigRational coefficients GenSolvablePolynomial tests with JUnit.
018 * @author Heinz Kredel.
019 */
020
021 public class RatGenSolvablePolynomialTest extends TestCase {
022
023 /**
024 * main.
025 */
026 public static void main (String[] args) {
027 BasicConfigurator.configure();
028 junit.textui.TestRunner.run( suite() );
029 }
030
031 /**
032 * Constructs a <CODE>RatGenSolvablePolynomialTest</CODE> object.
033 * @param name String.
034 */
035 public RatGenSolvablePolynomialTest(String name) {
036 super(name);
037 }
038
039 /**
040 */
041 public static Test suite() {
042 TestSuite suite= new TestSuite(RatGenSolvablePolynomialTest.class);
043 return suite;
044 }
045
046
047 GenSolvablePolynomial<BigRational> a;
048 GenSolvablePolynomial<BigRational> b;
049 GenSolvablePolynomial<BigRational> c;
050 GenSolvablePolynomial<BigRational> d;
051 GenSolvablePolynomial<BigRational> e;
052 GenSolvablePolynomial<BigRational> f;
053 GenSolvablePolynomial<BigRational> x1;
054 GenSolvablePolynomial<BigRational> x2;
055
056 int rl = 5;
057 int kl = 10;
058 int ll = 5;
059 int el = 3;
060 float q = 0.5f;
061
062 RelationTable<BigRational> table;
063 GenSolvablePolynomialRing<BigRational> ring;
064 BigRational cfac;
065
066 protected void setUp() {
067 cfac = new BigRational(1);
068 ring = new GenSolvablePolynomialRing<BigRational>(cfac,rl);
069 table = ring.table;
070 a = b = c = d = e = null;
071 }
072
073 protected void tearDown() {
074 table = null;
075 ring = null;
076 a = b = c = d = e = null;
077 }
078
079
080 /**
081 * Test constructor and toString.
082 *
083 */
084 public void testConstructor() {
085 a = new GenSolvablePolynomial<BigRational>(ring);
086 assertTrue("length( a ) = 0", a.length() == 0);
087 assertTrue("isZERO( a )", a.isZERO() );
088 assertTrue("isONE( a )", !a.isONE() );
089
090 c = ring.getONE();
091 assertTrue("length( c ) = 1", c.length() == 1);
092 assertTrue("isZERO( c )", !c.isZERO() );
093 assertTrue("isONE( c )", c.isONE() );
094
095 d = ring.getZERO();
096 assertTrue("length( d ) = 0", d.length() == 0);
097 assertTrue("isZERO( d )", d.isZERO() );
098 assertTrue("isONE( d )", !d.isONE() );
099 }
100
101
102 /**
103 * Test random polynomial.
104 *
105 */
106 public void testRandom() {
107 assertTrue("isCommutative()",ring.isCommutative());
108
109 for (int i = 0; i < 2; i++) {
110 // a = ring.random(ll+2*i);
111 a = ring.random(kl*(i+1), ll+2*i, el+i, q );
112 assertTrue("length( a"+i+" ) <> 0", a.length() >= 0);
113 assertTrue(" not isZERO( a"+i+" )", !a.isZERO() );
114 assertTrue(" not isONE( a"+i+" )", !a.isONE() );
115 }
116 }
117
118
119 /**
120 * Test addition.
121 *
122 */
123 public void testAddition() {
124
125 a = ring.random(kl, ll, el, q );
126
127 c = (GenSolvablePolynomial<BigRational>)a.subtract(a);
128 assertTrue("a-a = 0", c.isZERO() );
129
130 b = (GenSolvablePolynomial<BigRational>)a.sum(a);
131 c = (GenSolvablePolynomial<BigRational>)b.subtract(a);
132
133 assertEquals("a+a-a = a",c,a);
134 assertTrue("a+a-a = a", c.equals(a) );
135
136 b = ring.random(kl, ll, el, q );
137 c = (GenSolvablePolynomial<BigRational>)b.sum(a);
138 d = (GenSolvablePolynomial<BigRational>)a.sum(b);
139
140 assertEquals("a+b = b+a",c,d);
141 assertTrue("a+b = b+a", c.equals(d) );
142
143 c = ring.random(kl, ll, el, q );
144 d = (GenSolvablePolynomial<BigRational>)a.sum(b.sum(c));
145 e = (GenSolvablePolynomial<BigRational>)a.sum(b).sum(c);
146
147 assertEquals("a+(b+c) = (a+b)+c",d,e);
148 assertTrue("a+(b+c) = (a+b)+c", d.equals(e) );
149
150 ExpVector u = ExpVector.EVRAND(rl,el,q);
151 BigRational x = cfac.random(kl);
152
153 b = ring.getONE().multiply( x, u);
154 c = (GenSolvablePolynomial<BigRational>)a.sum(b);
155 d = (GenSolvablePolynomial<BigRational>)a.sum(x,u);
156 assertEquals("a+p(x,u) = a+(x,u)",c,d);
157
158 c = (GenSolvablePolynomial<BigRational>)a.subtract(b);
159 d = (GenSolvablePolynomial<BigRational>)a.subtract(x,u);
160 assertEquals("a-p(x,u) = a-(x,u)",c,d);
161
162 a = ring.getZERO();
163 b = ring.getONE().multiply( x, u);
164 c = (GenSolvablePolynomial<BigRational>)b.sum(a);
165 d = (GenSolvablePolynomial<BigRational>)a.sum(x,u);
166 assertEquals("a+p(x,u) = a+(x,u)",c,d);
167
168 c = (GenSolvablePolynomial<BigRational>)a.subtract(b);
169 d = (GenSolvablePolynomial<BigRational>)a.subtract(x,u);
170 assertEquals("a-p(x,u) = a-(x,u)",c,d);
171 }
172
173
174 /**
175 * Test object multiplication.
176 *
177 */
178
179 public void testMultiplication() {
180
181 a = ring.random(kl, ll, el, q );
182 assertTrue("not isZERO( a )", !a.isZERO() );
183 //a = RatGenSolvablePolynomial.DIRRAS(1, kl, 4, el, q );
184
185 b = ring.random(kl, ll, el, q );
186 assertTrue("not isZERO( b )", !b.isZERO() );
187
188 c = b.multiply(a);
189 d = a.multiply(b);
190 assertTrue("not isZERO( c )", !c.isZERO() );
191 assertTrue("not isZERO( d )", !d.isZERO() );
192
193 e = (GenSolvablePolynomial<BigRational>)d.subtract(c);
194 assertTrue("isZERO( a*b-b*a ) " + e, e.isZERO() );
195
196 assertEquals("a*b = b*a",c,d);
197 assertTrue("a*b = b*a", c.equals(d) );
198
199 c = ring.random(kl, ll, el, q );
200 d = a.multiply( b.multiply(c) );
201 e = (a.multiply(b)).multiply(c);
202
203 assertEquals("a(bc) = (ab)c",d,e);
204 assertTrue("a(bc) = (ab)c", d.equals(e) );
205
206 BigRational x = a.leadingBaseCoefficient().inverse();
207 c = (GenSolvablePolynomial<BigRational>)a.monic();
208 d = a.multiply(x);
209 assertEquals("a.monic() = a(1/ldcf(a))",c,d);
210
211 ExpVector u = ring.evzero;
212 BigRational y = b.leadingBaseCoefficient().inverse();
213 c = (GenSolvablePolynomial<BigRational>)b.monic();
214 d = b.multiply(y,u);
215 assertEquals("b.monic() = b(1/ldcf(b))",c,d);
216
217 e = ring.getONE().multiply(y,u);
218 d = b.multiply(e);
219 assertEquals("b.monic() = b(1/ldcf(b))",c,d);
220
221 d = e.multiply(b);
222 assertEquals("b.monic() = (1/ldcf(b) (0))*b",c,d);
223 }
224
225
226 /**
227 * Test Weyl polynomials.
228 *
229 */
230
231 public void testWeyl() {
232
233 int rloc = 4;
234 ring = new GenSolvablePolynomialRing<BigRational>(cfac,rloc);
235
236 WeylRelations<BigRational> wl = new WeylRelations<BigRational>(ring);
237 wl.generate();
238 table = ring.table;
239 //System.out.println("table = " + table);
240 //System.out.println("ring = " + ring);
241
242 assertFalse("isCommutative()",ring.isCommutative());
243 assertTrue("isAssociative()",ring.isAssociative());
244
245 a = ring.random(kl, ll, el, q );
246 assertTrue("not isZERO( a )", !a.isZERO() );
247 //System.out.println("a = " + a);
248
249 b = ring.random(kl, ll, el, q );
250 assertTrue("not isZERO( b )", !b.isZERO() );
251 //System.out.println("b = " + b);
252
253
254 // non commutative
255 c = b.multiply(a);
256 d = a.multiply(b);
257 //System.out.println("c = " + c);
258 //System.out.println("d = " + d);
259 assertTrue("not isZERO( c )", !c.isZERO() );
260 assertTrue("not isZERO( d )", !d.isZERO() );
261
262 e = (GenSolvablePolynomial<BigRational>)d.subtract(c);
263 assertTrue("!isZERO( a*b-b*a ) " + e, !e.isZERO() );
264 assertTrue("a*b != b*a", !c.equals(d) );
265
266
267 c = ring.random(kl, ll, el, q );
268 //System.out.println("\na = " + a);
269 //System.out.println("\nb = " + b);
270 //System.out.println("\nc = " + c);
271
272 // associative
273 //x1 = b.multiply(c);
274 //System.out.println("\nx1 = " + x1);
275 d = a.multiply( b.multiply(c) );
276
277 //x2 = a.multiply(b);
278 //System.out.println("\nx2 = " + x2);
279 e = a.multiply(b).multiply(c);
280
281 //System.out.println("\nd = " + d);
282 //System.out.println("\ne = " + e);
283
284 //f = (GenSolvablePolynomial<BigRational>)d.subtract(e);
285 //System.out.println("\nf = " + f);
286
287 assertEquals("a(bc) = (ab)c",d,e);
288 assertTrue("a(bc) = (ab)c", d.equals(e) );
289 }
290
291
292 /**
293 * Test distributive law.
294 *
295 */
296 public void testDistributive() {
297 int rloc = 4;
298 ring = new GenSolvablePolynomialRing<BigRational>(cfac,rloc);
299
300 WeylRelations<BigRational> wl = new WeylRelations<BigRational>(ring);
301 wl.generate();
302 //table = ring.table;
303 //System.out.println("table = " + table);
304 //System.out.println("ring = " + ring);
305
306 a = ring.random(kl,ll,el,q);
307 b = ring.random(kl,ll,el,q);
308 c = ring.random(kl,ll,el,q);
309
310 d = a.multiply( (GenSolvablePolynomial<BigRational>)b.sum(c) );
311 e = (GenSolvablePolynomial<BigRational>)a.multiply( b ).sum( a.multiply(c) );
312
313 assertEquals("a(b+c) = ab+ac",d,e);
314 }
315 }