001 /*
002 * $Id: ModGenSolvablePolynomialTest.java 1255 2007-07-29 10:16:33Z kredel $
003 */
004
005 package edu.jas.poly;
006
007 import junit.framework.Test;
008 import junit.framework.TestCase;
009 import junit.framework.TestSuite;
010
011 import org.apache.log4j.BasicConfigurator;
012
013 import edu.jas.arith.ModInteger;
014 import edu.jas.arith.ModIntegerRing;
015 //import edu.jas.structure.RingElem;
016
017
018 /**
019 * ModInteger coefficients GenSolvablePolynomial tests with JUnit.
020 * @author Heinz Kredel.
021 */
022
023 public class ModGenSolvablePolynomialTest extends TestCase {
024
025 /**
026 * main
027 */
028 public static void main (String[] args) {
029 BasicConfigurator.configure();
030 junit.textui.TestRunner.run( suite() );
031 }
032
033 /**
034 * Constructs a <CODE>ModGenSolvablePolynomialTest</CODE> object.
035 * @param name String.
036 */
037 public ModGenSolvablePolynomialTest(String name) {
038 super(name);
039 }
040
041 /**
042 * suite.
043 */
044 public static Test suite() {
045 TestSuite suite= new TestSuite(ModGenSolvablePolynomialTest.class);
046 return suite;
047 }
048
049
050 GenSolvablePolynomial<ModInteger> a;
051 GenSolvablePolynomial<ModInteger> b;
052 GenSolvablePolynomial<ModInteger> c;
053 GenSolvablePolynomial<ModInteger> d;
054 GenSolvablePolynomial<ModInteger> e;
055 GenSolvablePolynomial<ModInteger> f;
056 GenSolvablePolynomial<ModInteger> x1;
057 GenSolvablePolynomial<ModInteger> x2;
058
059 int ml = 19; // modul
060 int rl = 5;
061 int kl = 10;
062 int ll = 5;
063 int el = 3;
064 float q = 0.5f;
065
066 RelationTable<ModInteger> table;
067 GenSolvablePolynomialRing<ModInteger> ring;
068 ModIntegerRing cfac;
069
070 protected void setUp() {
071 cfac = new ModIntegerRing(ml);
072 ring = new GenSolvablePolynomialRing<ModInteger>(cfac,rl);
073 table = null; //ring.table;
074 a = b = c = d = e = null;
075 }
076
077 protected void tearDown() {
078 table = null;
079 ring = null;
080 a = b = c = d = e = null;
081 }
082
083
084 /**
085 * Test constructor and toString.
086 *
087 */
088 public void testConstructor() {
089 a = new GenSolvablePolynomial<ModInteger>(ring);
090 assertTrue("length( a ) = 0", a.length() == 0);
091 assertTrue("isZERO( a )", a.isZERO() );
092 assertTrue("isONE( a )", !a.isONE() );
093
094 c = ring.getONE();
095 assertTrue("length( c ) = 1", c.length() == 1);
096 assertTrue("isZERO( c )", !c.isZERO() );
097 assertTrue("isONE( c )", c.isONE() );
098
099 d = ring.getZERO();
100 assertTrue("length( d ) = 0", d.length() == 0);
101 assertTrue("isZERO( d )", d.isZERO() );
102 assertTrue("isONE( d )", !d.isONE() );
103 }
104
105
106 /**
107 * Test random polynomial.
108 *
109 */
110 public void testRandom() {
111 assertTrue("isCommutative()",ring.isCommutative());
112
113 for (int i = 0; i < 2; i++) {
114 // a = ring.random(ll+2*i);
115 a = ring.random(kl*(i+1), ll+2*i, el+i, q );
116 assertTrue("length( a"+i+" ) <> 0", a.length() >= 0);
117 assertTrue(" not isZERO( a"+i+" )", !a.isZERO() );
118 assertTrue(" not isONE( a"+i+" )", !a.isONE() );
119 }
120 }
121
122
123 /**
124 * Test addition.
125 *
126 */
127 public void testAddition() {
128
129 a = ring.random(kl, ll, el, q );
130
131 c = (GenSolvablePolynomial<ModInteger>)a.subtract(a);
132 assertTrue("a-a = 0", c.isZERO() );
133
134 b = (GenSolvablePolynomial<ModInteger>)a.sum(a);
135 c = (GenSolvablePolynomial<ModInteger>)b.subtract(a);
136
137 assertEquals("a+a-a = a",c,a);
138 assertTrue("a+a-a = a", c.equals(a) );
139
140 b = ring.random(kl, ll, el, q );
141 c = (GenSolvablePolynomial<ModInteger>)b.sum(a);
142 d = (GenSolvablePolynomial<ModInteger>)a.sum(b);
143
144 assertEquals("a+b = b+a",c,d);
145 assertTrue("a+b = b+a", c.equals(d) );
146
147 c = ring.random(kl, ll, el, q );
148 d = (GenSolvablePolynomial<ModInteger>)a.sum(b.sum(c));
149 e = (GenSolvablePolynomial<ModInteger>)a.sum(b).sum(c);
150
151 assertEquals("a+(b+c) = (a+b)+c",d,e);
152 assertTrue("a+(b+c) = (a+b)+c", d.equals(e) );
153
154 ExpVector u = ExpVector.EVRAND(rl,el,q);
155 ModInteger x = cfac.random(kl);
156
157 b = ring.getONE().multiply( x, u);
158 c = (GenSolvablePolynomial<ModInteger>)a.sum(b);
159 d = (GenSolvablePolynomial<ModInteger>)a.sum(x,u);
160 assertEquals("a+p(x,u) = a+(x,u)",c,d);
161
162 c = (GenSolvablePolynomial<ModInteger>)a.subtract(b);
163 d = (GenSolvablePolynomial<ModInteger>)a.subtract(x,u);
164 assertEquals("a-p(x,u) = a-(x,u)",c,d);
165
166 a = ring.getZERO();
167 b = ring.getONE().multiply( x, u);
168 c = (GenSolvablePolynomial<ModInteger>)b.sum(a);
169 d = (GenSolvablePolynomial<ModInteger>)a.sum(x,u);
170 assertEquals("a+p(x,u) = a+(x,u)",c,d);
171
172 c = (GenSolvablePolynomial<ModInteger>)a.subtract(b);
173 d = (GenSolvablePolynomial<ModInteger>)a.subtract(x,u);
174 assertEquals("a-p(x,u) = a-(x,u)",c,d);
175 }
176
177
178 /**
179 * Test object multiplication.
180 *
181 */
182
183 public void testMultiplication() {
184
185 a = ring.random(kl, ll, el, q );
186 assertTrue("not isZERO( a )", !a.isZERO() );
187 //a = ModGenSolvablePolynomial.DIRRAS(1, kl, 4, el, q );
188
189 b = ring.random(kl, ll, el, q );
190 assertTrue("not isZERO( b )", !b.isZERO() );
191
192 c = b.multiply(a);
193 d = a.multiply(b);
194 assertTrue("not isZERO( c )", !c.isZERO() );
195 assertTrue("not isZERO( d )", !d.isZERO() );
196
197 e = (GenSolvablePolynomial<ModInteger>)d.subtract(c);
198 assertTrue("isZERO( a*b-b*a ) " + e, e.isZERO() );
199
200 assertEquals("a*b = b*a",c,d);
201 assertTrue("a*b = b*a", c.equals(d) );
202
203 c = ring.random(kl, ll, el, q );
204 d = a.multiply( b.multiply(c) );
205 e = (a.multiply(b)).multiply(c);
206
207 assertEquals("a(bc) = (ab)c",d,e);
208 assertTrue("a(bc) = (ab)c", d.equals(e) );
209
210 ModInteger x = a.leadingBaseCoefficient().inverse();
211 c = (GenSolvablePolynomial<ModInteger>)a.monic();
212 d = a.multiply(x);
213 assertEquals("a.monic() = a(1/ldcf(a))",c,d);
214
215 ExpVector u = ring.evzero;
216 ModInteger y = b.leadingBaseCoefficient().inverse();
217 c = (GenSolvablePolynomial<ModInteger>)b.monic();
218 d = b.multiply(y,u);
219 assertEquals("b.monic() = b(1/ldcf(b))",c,d);
220
221 e = ring.getONE().multiply(y,u);
222 d = b.multiply(e);
223 assertEquals("b.monic() = b(1/ldcf(b))",c,d);
224
225 d = e.multiply(b);
226 assertEquals("b.monic() = (1/ldcf(b) (0))*b",c,d);
227 }
228
229
230 /**
231 * Test Weyl polynomials.
232 *
233 */
234
235 public void testWeyl() {
236
237 int rloc = 4;
238 ring = new GenSolvablePolynomialRing<ModInteger>(cfac,rloc);
239
240 WeylRelations<ModInteger> wl = new WeylRelations<ModInteger>(ring);
241 wl.generate();
242 //table = ring.table;
243 //System.out.println("table = " + table);
244 //System.out.println("ring = " + ring);
245
246 assertFalse("isCommutative()",ring.isCommutative());
247 assertTrue("isAssociative()", ring.isAssociative());
248
249 a = ring.random(kl, ll, el+2, q );
250 assertTrue("not isZERO( a )", !a.isZERO() );
251 //System.out.println("a = " + a);
252
253 b = ring.random(kl, ll, el+2, q );
254 assertTrue("not isZERO( b )", !b.isZERO() );
255 //System.out.println("b = " + b);
256
257
258 // non commutative
259 c = b.multiply(a);
260 d = a.multiply(b);
261 //System.out.println("c = " + c);
262 //System.out.println("d = " + d);
263 assertTrue("not isZERO( c )", !c.isZERO() );
264 assertTrue("not isZERO( d )", !d.isZERO() );
265
266 e = (GenSolvablePolynomial<ModInteger>)d.subtract(c);
267 assertTrue("!isZERO( a*b-b*a ) " + e, !e.isZERO() );
268 assertTrue("a*b != b*a", !c.equals(d) );
269
270
271 c = ring.random(kl, ll, el, q );
272 //System.out.println("\na = " + a);
273 //System.out.println("\nb = " + b);
274 //System.out.println("\nc = " + c);
275
276 // associative
277 //x1 = b.multiply(c);
278 //System.out.println("\nx1 = " + x1);
279 d = a.multiply( b.multiply(c) );
280
281 //x2 = a.multiply(b);
282 //System.out.println("\nx2 = " + x2);
283 e = a.multiply(b).multiply(c);
284
285 //System.out.println("\nd = " + d);
286 //System.out.println("\ne = " + e);
287
288 //f = (GenSolvablePolynomial<ModInteger>)d.subtract(e);
289 //System.out.println("\nf = " + f);
290
291 assertEquals("a(bc) = (ab)c",d,e);
292 assertTrue("a(bc) = (ab)c", d.equals(e) );
293 }
294
295
296 /**
297 * Test distributive law.
298 *
299 */
300 public void testDistributive() {
301 int rloc = 4;
302 ring = new GenSolvablePolynomialRing<ModInteger>(cfac,rloc);
303
304 WeylRelations<ModInteger> wl = new WeylRelations<ModInteger>(ring);
305 wl.generate();
306 //table = ring.table;
307 //System.out.println("table = " + table);
308 //System.out.println("ring = " + ring);
309
310 a = ring.random(kl,ll,el,q);
311 b = ring.random(kl,ll,el,q);
312 c = ring.random(kl,ll,el,q);
313
314 d = a.multiply( (GenSolvablePolynomial<ModInteger>)b.sum(c) );
315 e = (GenSolvablePolynomial<ModInteger>)a.multiply( b ).sum( a.multiply(c) );
316
317 assertEquals("a(b+c) = ab+ac",d,e);
318 }
319
320 }