```(* ----------------------------------------------------------------------------
* \$Id: DIPIDEAL.md,v 1.3 1993/05/11 10:53:31 kredel Exp \$
* ----------------------------------------------------------------------------
* This file is part of MAS.
* ----------------------------------------------------------------------------
* Copyright (c) 1989 - 1992 Universitaet Passau
* ----------------------------------------------------------------------------
* \$Log: DIPIDEAL.md,v \$
* Revision 1.3  1993/05/11  10:53:31  kredel
* Spelling errors corr.
*
* Revision 1.2  1992/02/12  17:34:19  pesch
* Moved CONST definition to the right place
*
* Revision 1.1  1992/01/22  15:14:35  kredel
* Initial revision
*
* ----------------------------------------------------------------------------
*)

DEFINITION MODULE DIPIDEAL;

(* DIP Ideal System Definition Module. *)

FROM MASSTOR IMPORT LIST;

CONST rcsid = "\$Id: DIPIDEAL.md,v 1.3 1993/05/11 10:53:31 kredel Exp \$";

PROCEDURE DIPLDV(A,V: LIST): LIST;
(*Distributive polynomial list dependency on variables.
A is a list of distributive polynomials. V is the variable list.
U is the variable list of variables with positive exponents in A. *)

PROCEDURE DIRLCT(A,B: LIST): LIST;
(*Distributive rational polynomial list ideal containment test.
A and B are lists of distributive rational polynomials representing
groebner bases. t = 1 if ideal(A) is contained in ideal(B),
t = 0 else. *)

PROCEDURE DIRLIP(PL,A,B: LIST): LIST;
(*Distributive rational polynomial list ideal product.
A and B are lists of distributive rational polynomials.
C=GBASIS(p,A*B).*)

PROCEDURE DIRLPI(A,P,VP: LIST): LIST;
(*Distributive rational polynomial list primary ideal.
A and P are non empty lists of distributive rational polynomials
representing groebner bases. The polynomials in A have r variables.
ideal(P) is a prime ideal in at most r+1 variables. VP is the
variable list for P. QP=(P,e,VP,Q) where Q = ideal(P**e,A)
with A contained in Q and e maximal. *)

END DIPIDEAL.

(* -EOF- *)
```