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Introductory example

● solvable polynomial ring

– variables x, y, z, t, relations in Q
x

– Residue class quotient field modulo the two-
sided ideal I



as Java code

  String[] vars = new String[] { "x", "y", "z", "t" };
  BigRational cfac = new BigRational(1);
  GenSolvablePolynomialRing<BigRational> mfac;
  mfac = new GenSolvablePolynomialRing<BigRational>(cfac, 
                           TermOrderByName.INVLEX, vars);
  GenSolvablePolynomial<BigRational> p; 
  List<GenSolvablePolynomial<BigRational>> rel; 
  rel = new ArrayList<GenSolvablePolynomial<BigRational>>(); 
   
  //z, y,  y * z + x, 
  p = mfac.parse("z"); rel.add(p); 
  p = mfac.parse("y"); rel.add(p); 
  p = mfac.parse("y * z + x"); rel.add(p); 
  //t, y,  y * t + y, //t, z,  z * t - z  ...
  mfac.addSolvRelations(rel); //add relations to Q_x 

● Polynomial ring construction

Ruby and Python interface also available



Java code

  p = mfac.parse("t^2 + z^2 + y^2 + x^2 + 1"); F.add(p);
  SolvableIdeal<BigRational> id;
  id = new SolvableIdeal<BigRational>(mfac, F,
                            SolvableIdeal.Side.twosided);
  id.doGB(); // compute twosided GB
  SolvableLocalResidueRing<BigRational> efac;
  efac = new SolvableLocalResidueRing<BigRational>(id);

● Local residue ring construction



Expression swell

● b equals (b*a-1)*a = f 
● but b has 4 terms and f has 150 terms
● need some kind of reduction to lower terms
● like division by common divisors in the 

commutative case

  SolvableLocalResidue<BigRational> a, b, c, d, e, f;
  p = mfac.parse("t + x + y + 1");
  a = new SolvableLocalResidue<BigRational>(efac, p);
  p = mfac.parse("z^2+x+1");
  b = new SolvableLocalResidue<BigRational>(efac, p);
  c = a.inverse();
  f = b.multiply(c).multiply(a); 
  b.equals(f); // --> true, since (b * 1/a) * a == b



Related work (selected)

● enveloping fields of Lie algebras [Apel, Lassner]
● solvable polynomial rings [Kandri-Rodi, 

Weispfenning]
● free-noncommutative polynomial rings [Mora]
● parametric solvable polynomial rings and 

comprehensive Gröbner bases [Weispfenning, 
Kredel]

● recursive solvable polynomial rings [Kredel]
● PBW algebras in Singular/Plural [Levandovskyy]
● primary ideal decomposition [Gomez-Torrecillas]



Solvable Polynomial Rings
Solvable polynomial ring S: associative Ring (S,0,1,+,-,*), 
K a (skew) field, in n variables

commutator relations between variables, lt(p
ij
) < X

i
 X

j

commutator relations between variables and coefficients

< a *-compatible term order on S x S: a < b  a*⇒ c < b*c 
and c*a < c*b for a, b, c in S



Parametric Solvable Polynomial 
Coefficient Rings

recursive solvable polynomial rings



Factorization

● solvable polynomial rings are integral domains 
and factorization domains (if coefficients are so)

● but factorization may not be uniqe
● obviously the order of the factors matters
● we have to distiguish between left and right 

(common) divisors
● implementation is work in progress



Ore condition

● for a, b in R there exist 
– c, d in R with c*a = d*b      left Ore condition

– c', d' in R with a*c' = b*d'   right Ore condition

● Theorem: Noetherian rings satify the Ore condition
– left / left and right / right

● can be computed by left respectively right syzygy 
computations in R [Apel]

● Theorem: domains with Ore condition can be 
embedded in a skew field

● a/b * c/d :=: (f*c)/(e*b) where e,f with e*a = f*d



Implementation of Solvable 
Polynomial Rings

● Java Algebra System (JAS)
● generic type parameters : RingElem<C>
● type safe, interoperable, object oriented
● has commutative greatest common divisors, 

squarefree decomposition, factorization and 
Gröbner bases

● scriptable with JRuby, Jython and interactive
● parallel multi-core and distributed cluster algorithms



Implementation (cont.)

● solvable polynomials can share representations 
with commutative polynomials and reuse 
implementations, ''only'' multiplication to be done

● implementation is generic in the sense that various 
coefficient rings can be used in a strongly type 
safe way and still good performing code

● employ parametric coefficient rings with 
commutator relations between variables and 
coefficient variables

● special case recursive solvable polynomial rings



Recursive solvable polynomial ring

● implemented in RecSolvablePolynomial and 
RecSolvablePolynomialRing

● extends 
GenSolvablePolynomial<GenPolynomial<C>>

● additional relation table coeffTable for 
relations from Q'

ux
, with type 

RelationTable<GenPolynomial<C>>

● recording of powers of relations for lookup 
instead of recomputation 

● new method rightRecursivePolynomial() 
with coefficients on the right side



Common divisor algorithm

● for a univariate polynomial compute (with 
multivariate coefficients) compute the (left, 
right) content by recursion

● remove both contents to obtain a primitive 
polynomial

● for the univariate polynomial compute a 
common divisor with Euclids algorithm and 
pseudo remainders

● note: pseudo remainders need the computaton 
of Ore conditions



Idea of recursive algorithm
uPol uGcd( uPol a, uPol b ) {      // Euclids algorithm 
    while ( b != 0 ) { 
          // let a = q b + r;           // (left) remainder
          // let ldcf(b)^e a = q b + r; // pseudo remainder
          a = b;
          b = r; // simplify remainder
    }
    return a; 
}

mPol uGcd( mPol a, mPol b ) { 
     a1 = content(a);    // gcd of coefficients
     b1 = content(b);    // or recursion
     c1 = gcd( a1, b1 ); // recursion
     a2 = a / a1;        // primitive part
     b2 = b / b1; 
     c2 = uGcd( a2, b2 );
     return c1 * c2; 
}



Common
Divisors



Class design

● interface GreatestCommonDivisor

– with leftGcd() and rightGcd()

– with leftContent() and rightContent()

– with leftPrimitivePart() and rightPrimitivePart()

– construct lists of mutable common divisors 1

– type parameter C: extends interface 
GcdRingElem



Class design (cont.)

● abstract class 
GreatestCommonDivisorsAbstract

– implements all methods from interface except

– leftBaseGcd(), rightBaseGcd(), 
leftRecursiveUnivariateGcd(), 
rightRecursiveUnivariateGcd()

● implemented by concrete classes 
GreatestCommonDivisorSimple and 
GreatestCommonDivisorPrimitive

– using the respective polynomial remainder 
sequences (PRS)



Extensions

● SGCDFactory with getImplementation() or get 
Proxy()

● SGCDParallelProxy using invokeAny() of 
ExecutorService in java.util.concurrent

– run two algorithms in parallel and use result of 
first finished one



Example (continued)
 GreatestCommonDivisorAbstract<BigRational> engine;
 engine = new GreatestCommonDivisorSimple<BigRational>(cfac);
 p = engine.leftGcd(f.num,f.den);

// p = ( x**2 * z * t**2 + 3 * x * z * t**2 + 2 * z * t**2 + x**2 *
// t**2 + 3 * x * t**2 + 2 * t**2 + z**2 * t + 2 * x**2 * y * z * t + 6
// * x * y * z * t + 4 * y * z * t + 2 * x**3 * z * t + 9 * x**2 * z * t
// + 14 * x * z * t + 8 * z * t + 2 * x**2 * y * t + 6 * x * y * t + 4 *
// y * t + 5 * x**3 * t + 19 * x**2 * t + 23 * x * t + 9 * t + y * z**2
// + x * z**2 + 3 * z**2 + x**2 * y**2 * z + 3 * x * y**2 * z + 2 * y**2
// * z + 2 * x**3 * y * z + 10 * x**2 * y * z + 17 * x * y * z + 10 * y
// * z + x**4 * z + 6 * x**3 * z + 12 * x**2 * z + 15 * x * z + 6 * z +
// x**2 * y**2 + 3 * x * y**2 + 2 * y**2 + 5 * x**3 * y + 20 * x**2 * y
// + 26 * x * y + 11 * y + 4 * x**4 + 19 * x**3 + 36 * x**2 + 31 * x + 7)

GenSolvablePolynomial<BigRational>[] qr;
qr = FDUtil.<BigRational> rightBasePseudoQuotientRemainder(f.num, p);
fn = qr[0]; // ( z**2 + x + 1 ), qr[1] == 0
qr = FDUtil.<BigRational> rightBasePseudoQuotientRemainder(f.den, p);
fd = qr[0]; // 1, qr[1] == 0
e = new SolvableLocalResidue<BigRational>(efac, fn, fd);
// e = ( z**2 + x + 1 )
e.equals(b); // --> true



Application

● make use of the common divisor computation in 
the constructors of SolvableLocalResidue, 
SolvableLocal and SolvableQuotient

● so reduce the fractions to lower terms
● utility methods leftGcdCofactors and 

rightGcdCofactors
● improve the feasibility of computations with 

solvable quotient rings
● expression swell in Ore condition remains

– syzygy computation in rings with k variables



Conclusions

● considered parametric solvable polynomial rings, 
with definition of commutator relations between 
polynomial variables and coefficient variables

● computed in recursive solvable polynomial rings 
● possible to compute common divisors on the left 

and right side
● use to simplify quotients of solvable polynomials 
● using them as coefficient rings of solvable 

polynomial rings makes computations of roots 
and ideal constructions over skew fields feasible



Conclusions (cont.) 

● algorithms implemented in JAS in a type-safe, 
object oriented way with generic coefficients 

● the high complexity of the solvable 
multiplication 

● presented an efficient simplifier to reduce 
(intermediate) expression swell to foster 
practical computations

● high complexity of Ore condition computations 
remain (syzygies for multivariate polynomials)

● this will eventually be improved in future work



Thank you for your attention

Questions ?

Comments ?

http://krum.rz.uni-mannheim.de/jas/
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