
Common Divisors of Solvable
Polynomials in JAS

Heinz Kredel, University of Mannheim

ICMS 2016, Berlin

Overview

● Introduction
– Example

● Solvable Polynomial Rings
– Parametric Solvable Polynomial Rings

● Generic Common Divisors
– Recursive Algorithm

– Class Design

– Example cont.

● Conclusions

Introductory example

● solvable polynomial ring

– variables x, y, z, t, relations in Q
x

– Residue class quotient field modulo the two-
sided ideal I

as Java code

 String[] vars = new String[] { "x", "y", "z", "t" };
 BigRational cfac = new BigRational(1);
 GenSolvablePolynomialRing<BigRational> mfac;
 mfac = new GenSolvablePolynomialRing<BigRational>(cfac,
 TermOrderByName.INVLEX, vars);
 GenSolvablePolynomial<BigRational> p;
 List<GenSolvablePolynomial<BigRational>> rel;
 rel = new ArrayList<GenSolvablePolynomial<BigRational>>();

 //z, y, y * z + x,
 p = mfac.parse("z"); rel.add(p);
 p = mfac.parse("y"); rel.add(p);
 p = mfac.parse("y * z + x"); rel.add(p);
 //t, y, y * t + y, //t, z, z * t - z ...
 mfac.addSolvRelations(rel); //add relations to Q_x

● Polynomial ring construction

Ruby and Python interface also available

Java code

 p = mfac.parse("t^2 + z^2 + y^2 + x^2 + 1"); F.add(p);
 SolvableIdeal<BigRational> id;
 id = new SolvableIdeal<BigRational>(mfac, F,
 SolvableIdeal.Side.twosided);
 id.doGB(); // compute twosided GB
 SolvableLocalResidueRing<BigRational> efac;
 efac = new SolvableLocalResidueRing<BigRational>(id);

● Local residue ring construction

Expression swell

● b equals (b*a-1)*a = f
● but b has 4 terms and f has 150 terms
● need some kind of reduction to lower terms
● like division by common divisors in the

commutative case

 SolvableLocalResidue<BigRational> a, b, c, d, e, f;
 p = mfac.parse("t + x + y + 1");
 a = new SolvableLocalResidue<BigRational>(efac, p);
 p = mfac.parse("z^2+x+1");
 b = new SolvableLocalResidue<BigRational>(efac, p);
 c = a.inverse();
 f = b.multiply(c).multiply(a);
 b.equals(f); // --> true, since (b * 1/a) * a == b

Related work (selected)

● enveloping fields of Lie algebras [Apel, Lassner]
● solvable polynomial rings [Kandri-Rodi,

Weispfenning]
● free-noncommutative polynomial rings [Mora]
● parametric solvable polynomial rings and

comprehensive Gröbner bases [Weispfenning,
Kredel]

● recursive solvable polynomial rings [Kredel]
● PBW algebras in Singular/Plural [Levandovskyy]
● primary ideal decomposition [Gomez-Torrecillas]

Solvable Polynomial Rings
Solvable polynomial ring S: associative Ring (S,0,1,+,-,*),
K a (skew) field, in n variables

commutator relations between variables, lt(p
ij
) < X

i
 X

j

commutator relations between variables and coefficients

< a *-compatible term order on S x S: a < b a*⇒ c < b*c
and c*a < c*b for a, b, c in S

Parametric Solvable Polynomial
Coefficient Rings

recursive solvable polynomial rings

Factorization

● solvable polynomial rings are integral domains
and factorization domains (if coefficients are so)

● but factorization may not be uniqe
● obviously the order of the factors matters
● we have to distiguish between left and right

(common) divisors
● implementation is work in progress

Ore condition

● for a, b in R there exist
– c, d in R with c*a = d*b left Ore condition

– c', d' in R with a*c' = b*d' right Ore condition

● Theorem: Noetherian rings satify the Ore condition
– left / left and right / right

● can be computed by left respectively right syzygy
computations in R [Apel]

● Theorem: domains with Ore condition can be
embedded in a skew field

● a/b * c/d :=: (f*c)/(e*b) where e,f with e*a = f*d

Implementation of Solvable
Polynomial Rings

● Java Algebra System (JAS)
● generic type parameters : RingElem<C>
● type safe, interoperable, object oriented
● has commutative greatest common divisors,

squarefree decomposition, factorization and
Gröbner bases

● scriptable with JRuby, Jython and interactive
● parallel multi-core and distributed cluster algorithms

Implementation (cont.)

● solvable polynomials can share representations
with commutative polynomials and reuse
implementations, ''only'' multiplication to be done

● implementation is generic in the sense that various
coefficient rings can be used in a strongly type
safe way and still good performing code

● employ parametric coefficient rings with
commutator relations between variables and
coefficient variables

● special case recursive solvable polynomial rings

Recursive solvable polynomial ring

● implemented in RecSolvablePolynomial and
RecSolvablePolynomialRing

● extends
GenSolvablePolynomial<GenPolynomial<C>>

● additional relation table coeffTable for
relations from Q'

ux
, with type

RelationTable<GenPolynomial<C>>

● recording of powers of relations for lookup
instead of recomputation

● new method rightRecursivePolynomial()
with coefficients on the right side

Common divisor algorithm

● for a univariate polynomial compute (with
multivariate coefficients) compute the (left,
right) content by recursion

● remove both contents to obtain a primitive
polynomial

● for the univariate polynomial compute a
common divisor with Euclids algorithm and
pseudo remainders

● note: pseudo remainders need the computaton
of Ore conditions

Idea of recursive algorithm
uPol uGcd(uPol a, uPol b) { // Euclids algorithm
 while (b != 0) {
 // let a = q b + r; // (left) remainder
 // let ldcf(b)^e a = q b + r; // pseudo remainder
 a = b;
 b = r; // simplify remainder
 }
 return a;
}

mPol uGcd(mPol a, mPol b) {
 a1 = content(a); // gcd of coefficients
 b1 = content(b); // or recursion
 c1 = gcd(a1, b1); // recursion
 a2 = a / a1; // primitive part
 b2 = b / b1;
 c2 = uGcd(a2, b2);
 return c1 * c2;
}

Common
Divisors

Class design

● interface GreatestCommonDivisor

– with leftGcd() and rightGcd()

– with leftContent() and rightContent()

– with leftPrimitivePart() and rightPrimitivePart()

– construct lists of mutable common divisors 1

– type parameter C: extends interface
GcdRingElem

Class design (cont.)

● abstract class
GreatestCommonDivisorsAbstract

– implements all methods from interface except

– leftBaseGcd(), rightBaseGcd(),
leftRecursiveUnivariateGcd(),
rightRecursiveUnivariateGcd()

● implemented by concrete classes
GreatestCommonDivisorSimple and
GreatestCommonDivisorPrimitive

– using the respective polynomial remainder
sequences (PRS)

Extensions

● SGCDFactory with getImplementation() or get
Proxy()

● SGCDParallelProxy using invokeAny() of
ExecutorService in java.util.concurrent

– run two algorithms in parallel and use result of
first finished one

Example (continued)
 GreatestCommonDivisorAbstract<BigRational> engine;
 engine = new GreatestCommonDivisorSimple<BigRational>(cfac);
 p = engine.leftGcd(f.num,f.den);

// p = (x**2 * z * t**2 + 3 * x * z * t**2 + 2 * z * t**2 + x**2 *
// t**2 + 3 * x * t**2 + 2 * t**2 + z**2 * t + 2 * x**2 * y * z * t + 6
// * x * y * z * t + 4 * y * z * t + 2 * x**3 * z * t + 9 * x**2 * z * t
// + 14 * x * z * t + 8 * z * t + 2 * x**2 * y * t + 6 * x * y * t + 4 *
// y * t + 5 * x**3 * t + 19 * x**2 * t + 23 * x * t + 9 * t + y * z**2
// + x * z**2 + 3 * z**2 + x**2 * y**2 * z + 3 * x * y**2 * z + 2 * y**2
// * z + 2 * x**3 * y * z + 10 * x**2 * y * z + 17 * x * y * z + 10 * y
// * z + x**4 * z + 6 * x**3 * z + 12 * x**2 * z + 15 * x * z + 6 * z +
// x**2 * y**2 + 3 * x * y**2 + 2 * y**2 + 5 * x**3 * y + 20 * x**2 * y
// + 26 * x * y + 11 * y + 4 * x**4 + 19 * x**3 + 36 * x**2 + 31 * x + 7)

GenSolvablePolynomial<BigRational>[] qr;
qr = FDUtil.<BigRational> rightBasePseudoQuotientRemainder(f.num, p);
fn = qr[0]; // (z**2 + x + 1), qr[1] == 0
qr = FDUtil.<BigRational> rightBasePseudoQuotientRemainder(f.den, p);
fd = qr[0]; // 1, qr[1] == 0
e = new SolvableLocalResidue<BigRational>(efac, fn, fd);
// e = (z**2 + x + 1)
e.equals(b); // --> true

Application

● make use of the common divisor computation in
the constructors of SolvableLocalResidue,
SolvableLocal and SolvableQuotient

● so reduce the fractions to lower terms
● utility methods leftGcdCofactors and

rightGcdCofactors
● improve the feasibility of computations with

solvable quotient rings
● expression swell in Ore condition remains

– syzygy computation in rings with k variables

Conclusions

● considered parametric solvable polynomial rings,
with definition of commutator relations between
polynomial variables and coefficient variables

● computed in recursive solvable polynomial rings
● possible to compute common divisors on the left

and right side
● use to simplify quotients of solvable polynomials
● using them as coefficient rings of solvable

polynomial rings makes computations of roots
and ideal constructions over skew fields feasible

Conclusions (cont.)

● algorithms implemented in JAS in a type-safe,
object oriented way with generic coefficients

● the high complexity of the solvable
multiplication

● presented an efficient simplifier to reduce
(intermediate) expression swell to foster
practical computations

● high complexity of Ore condition computations
remain (syzygies for multivariate polynomials)

● this will eventually be improved in future work

Thank you for your attention

Questions ?

Comments ?

http://krum.rz.uni-mannheim.de/jas/

Acknowledgments

thanks to: Thomas Becker, Raphael Jolly, Wolfgang
K. Seiler, Axel Kramer, Thomas Sturm, Victor
Levandovskyy, Joachim Apel, Hans-Günther Kruse,
Markus Aleksy

thanks to the referees

http://krum.rz.uni-mannheim.de/jas/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25

