bwGRiD Treff am URZ

Sabine Richling, Heinz Kredel

Universitätsrechenzentrum Heidelberg
Rechenzentrum Universität Mannheim

29. April 2010
Invited are

- Current users of the bwGRiD Clusters HD/MA
- Students and scientists interested in Grid Computing
- Members of the Universities Heidelberg and Mannheim
bwGRiD Treff – Content

● Status and Plans for bwGRiD
 ● bwGRiD Cluster HD/MA
 ● bwGRiD Project
 ● Discussion software modules

● Lectures and/or workshops
 ● Introduction Batch-System
 ● Software packages and Parallelization
 ● Programming in Java, Fortran, C
 ● Parallelization with MPI/OpenMP
 ● Grid access and Grid usage

● User contributions
 ● Presentation of projects
 ● Demonstration of problems/solutions

● To meet you in person

Richling/Kredel (URZ/RUM)
Agenda for today:

- The current status of bwGRiD (S. Richling)
- Details on the interconnection of the bwGRiD clusters Heidelberg and Mannheim (H. Kredel)
- Plans for the home directories and the next image (S. Hau)
- Presentation of a medicine project (L. Jahnke, Medizinische Fakultät Mannheim)
- Discussion of topics for further meetings
Current Status of bwGRiD

S. Richling (URZ)
What is a Grid? What is Grid Computing?

“Grid computing is coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations.” (Ian Foster)

- A Grid is an infrastructure which integrates resources such as high performance computers, compute clusters, data storage units, networks and scientific instruments.
- Grid resources can be used for problem solving in virtual organisations.
- Virtual organisations consist of members from different institutions working together and sharing the resources.
- Grid resources remain under the control of the owner.
D-Grid Initiative

- www.d-grid.de
- Start: September 2005
- Funding: ~ 50 Million Euro
- Aim: Development and establishment of a reliable and sustainable Grid infrastructure for e-science in Germany.
- Funded by the Federal Ministry of Education and Research (BMBF)
D-Grid Overview

- One project for the development of a Grid platform and for securing the sustainability of this platform:
 - D-Grid Integration Project (DGI)
- Community projects from different fields of research, e.g.:
 - High Energy Physics (HEP-Grid)
 - Astrophysics (AstroGrid-D)
 - Medicine and Life sciences (MediGrid)
 - Climate Research (C3-Grid)
 - Arts and Humanities (TextGrid)
 - Universities of BW (bwGRiD)
- More than 20 German computing centers provide resources for D-Grid.
- D-Grid supports several Grid middlewares and services, e.g.:
 - Globus Toolkit
 - UNICORE
 - gLite
 - GridSphere
D-Grid Resource Provider
bwGRiD

- www.bw-grid.de
- Community project of the Universities of BW
- Compute Clusters: Stuttgart, Ulm (Konstanz), Karlsruhe, Tbingen, Freiburg, Mannheim/Heidelberg
- Central storage unit in Karlsruhe
- Distributed system with local administration
- Computing centers focus on software in different fields of research
- Access via at least one middleware supported by D-Grid
bwGRiD - Aims

- Proof of the functionality of and the benefit from Grid concepts for the HPC community.
- Managing organisational and security problems
- Development of new cluster and Grid applications
- Solving license difficulties
- Enabling the computing centers to specialize
Access Possibilities

Important!

- **Access with local Accounts:**

 Project numbers and User IDs (URZ); User IDs (RUM)

 → Access **only** to bwGRiD cluster MA/HD

- **Access with Grid Certificate:**

 Grid Certificate, VO membership, Grid Middleware

 → Access to all bwGRiD resources
Access to bwGRiD resources

With Middleware Globus Toolkit (gsissh, GridFTP, Web Services)

- **Compute cluster:**
 - Mannheim/Heidelberg: 280 nodes
 - Karlsruhe: 140 nodes
 - Stuttgart: 420 nodes
 - Tübingen: 140 nodes
 - Ulm (Konstanz): 280 nodes
 - Freiburg: 140 nodes

- **Central storage:**
 - Karlsruhe:
 - 128 TB (with Backup)
 - 256 TB (without Backup)
bwGRiD Software

- **Common Software:**
 - Scientific Linux
 - Intel Compiler
 - Software modules prepared for distribution among the sites (e.g. MPI versions, mathematical libraries, various free software)

- **Focus of bwGRiD sites:**
 - Mannheim: BWL, VWL, Computer Algebra
 - Heidelberg: Mathematics, Neuroscience

- **Karlsruhe:** Engineering, Compiler & Tools
- **Stuttgart:** Automotive simulations, Particle simulations
- **Tbingen:** Astrophysics, Bioinformatics
- **Ulm:** Chemistry, Molecular Dynamics
- **Konstanz:** Biochemistry, Theoretical Physics
- **Freiburg:** System Technology, Fluid Mechanics
bwGRiD in Development

- Integration into D-Grid Infrastructures (VO, Middleware, Monitoring)
- D-Grid User Support Portal
- Unification of the bwGRiD clusters
- Development of bwGRiD Portals
- Improvement of the bwGRiD webpage http://www.bw-grid.de
D-Grid User Support

- Ticket-System
- D-Grid News
- Maintenance
- May 2010: Integration into European System NGI

⇒ http://dgus.d-grid.de/
Unification of the bwGRiD clusters

- Operating system, Software
- Job Queues: Default queue available at all sites
- Workspaces for temporary files and large amounts of data (User allocates, extents and deletes workspaces by himself)
- User Support: Login messages, bwGRiD manpage, module help, coordination of local and central documentation
Development of bwGRiD Portals

- Freiburg: System Technology Portal (K. Kaminsiki)
- Heidelberg: Medicine Portal (L. Jahnke, J. Fleckenstein, M. Niknazar, J. Hesser)
- Tbingen: Bioinformatics Portal (S. Storch, W. Dilling)
- Ulm: Chemistry Portal (K. Taylor, D. Benoit), Avatar (H. Lang), Basis Portal and Gatlet (B. Boegel), Project leader (C. Mosch)
- Stuttgart: Workflow Management (T. Krasikova, Y. Yudin, N. Currle-Linde)
- Karlsruhe: Engineering Portal (E. Syrjakow)

⇒ Demonstration of the Basis Portal.
Improvement of the bwGRiD webpage

- New Layout
- More Content
- Access Information
- Portal Section
- User Project Descriptions

⇒ http://www.bw-grid.de/
User Projects 2009 – Heidelberg

- Theoretical Physics:
 QCD, Monte-Carlo and Molecular Dynamics
 Chromatin Folding, Bose-Einstein condensates

- IWR:
 Molecular Biophysics, Computational Neuroscience
 Development of parallel solvers

- Physical Chemistry:
 Electronic structure, Molecular Dynamics
 Lipids, Proteins, Many-Body-Systems
CPU Time 2009 – Heidelberg
User Projects 2009 – Mannheim

- VWL: Statistical analysis, Security Policy, Relationship between generations, Currencies
- BWL: Statistical analysis, Manager options, Implicit capital costs, Insider trading
- Computer Science: Simulation of mobile Networks, Tracking algorithms
- Material- and Geo science (Darmstadt): Simulation of nano-crystalline materials and crystal growth
- Medicine: Statistical DNA analysis
- UB: Automatic classification of documents
Your project will be published at www.bw-grid.de soon

- We prepare and send you a template containing information on your project we already have.
- You add missing information (coworkers, pictures, links, publications) and send it back to us.
- We collect the improved project descriptions and send it to Konstanz.
- Updates are possible at any time.

Planned for May/June 2010
Interconnection of the bwGRiD clusters HD and MA

Heidelberg and Mannheim

H. Kredel (RUM)
10 Blade-Center in Heidelberg and 10 Blade-Center in Mannheim

Each Blade-Center contains 14 IBM HS21 XM Blades

Each Blade contains
- 2 Intel Xeon CPUs, 2.8 GHz (each CPU with 4 Cores)
- 16 GB Memory
- 140 GB Hard Drive
- Gigabit-Ethernet
- Infiniband Network

⇒ 1120 Cores in Heidelberg and 1120 Cores in Mannheim
Hardware – Bladecenter
Interconnection of the bwGRID clusters HD and MA

Hardware – Infiniband
Hardware – Timeline

- January – March 2008: Delivery and assembly
- Operation in 2008:
 - Ethernet and Infiniband are working
 - Batch System is configured
 - NFS-Server for Home directories: IWR in Heidelberg, RUM in Mannheim
 - User administration: IWR in Heidelberg, RUM in Mannheim
- January 2009: Internal hard drives for the blades
- May – July 2009:
 - bwGRiD Storage System for home directories: 32 TB, parallel filesystem Lustre
 (one system in Heidelberg and one in Mannheim)
 - URZ takes over user administration in Heidelberg
 - Interconnection of the bwGRiD Clusters
Hardware – bwGRiD Storage System
Interconnection of the bwGRiD clusters

- Proposal in 2008
- Acquisition and Assembly until May 2009
- In service since July 2009
- Infiniband over fibre channel: Obsidian Logbow
Interconnection of the bwGRiD clusters HD and MA

Interconnection of the bwGRiD clusters

- ADVA: Input to DWDM line
Interconnection of the bwGRiD clusters HD and MA

HLRS MPI Performance

- Measurements for different distances
- up to 50-60 km are feasible
- Bandwidth 900-1000 MB/sec
- Latency is not published

Measurement results – full InfiniBand throughput over more than 50km distance
MPI Performance – Latency

Local: $\sim 2 \mu\text{sec}$
Interconnection: 145 μsec

![Graph showing MPI performance latency for IMB 3.2 and PingPong. The x-axis represents buffer size in bytes, and the y-axis represents time in microseconds. The graph compares local and MA-HD interconnection times, with local being significantly faster.]
MPI Performance – Bandwidth

Local: 1400 MB/sec
Interconnection: 930 MB/sec
Network Experiences from Interconnection

- Distance MA-HD is 28 km (18 km linear distance)
 \[\Rightarrow \text{Light needs } 116 \ \mu\text{sec for this distance} \]
- Latency is high: 145 \(\mu\text{sec} = \text{Light transit time} + 30 \ \mu\text{sec} \)
 Local latency only 1.99 \(\mu\text{sec} \) P-t-P (15 \(\mu\text{sec} \) coll. comm.)
- Bandwidth is as expected: about 930 MB/sec
 Local bandwidth 1200-1400 MB/sec
- Obsidian needs a license for 40 km
 - Obsidian has buffers for larger distances
 - Activation of buffers with license
 - License for 10 km is not sufficient
Interconnection of the bwGRiD clusters HD and MA

MPI Bandwidth – Influence of the Obsidian License

IMB 3.2 - PingPong - buffer size 1 GB

start time [date hour]

bandwidth [Mbytes/sec]
bwGRiD Cluster Mannheim/Heidelberg
Common Cluster Administration

- only one admin server, one PBS
- 2 access nodes for ssh, 10 GE to Belw
- 2 access nodes for gsissh/Globus, 10 GE to Belw
- Cluster-Admin-Tools from HLRS for hardware administration
 - MAC addresses, DHCP table
 - TFTP to boot the kernel
 - NFS for (admin) software and configuration
- 2 bladecenter of the Institute for Theoretical Physics are included in Heidelberg
- both bwGRiD Storage systems are mounted over Infiniband
Common User Administration

- Local accounts of bwGRiD users in MA and HD must be different (!)
- Generation of a common passwd and common group files
- Groups get the prefix “ma”, “hd” or “mh” for D-Grid users
- uidNumber +100.000 for MA, +200.000 for HD and +2.000.000 for D-Grid
- Authentication at the access nodes
 - directly using LDAP (MA) and AD (HD)
 - or with D-Grid certificate
Common Batch System

- Because of high latency: Jobs remain on one site
- Jobs are limited to one cluster, i.e. 140 compute nodes
- PBS Torque with Moab scheduler
- Performance of MPI Jobs with Infiniband communication is not sufficient for 28 km distance (Tests with HPL benchmark)
- Queues: single, normal, itp and Test-Queues
Monitoring Report during activation of the interconnection

Number of processes

Percent CPU Usage
Summary Interconnection

- Network: Obsidian, ADVA and Infiniband are working
- Latency of 145 μsec is very high
- Bandwidth of 930 MB/sec is as expected
- Jobs are limited to one site, because MPI Jobs across the interconnection would slow down
 Main reason: Interconnection is a “shared medium”, i.e. all processes use a single line for the whole communication
- Interconnection is useful and stable for a “Single System Cluster” administration
- Better load balance at both sites due to common PBS
Plans for the home directories and the next image

S. Hau (RUM)
Presentation of a Medicine Project
L. Jahnke (Medizinische Fakultät Mannheim)
Discussion of topics for further meetings
Next Meetings (Summer Term 2010)

Dates
- 20. May 2010
- 17. June 2010
- 15. July 2010

Time
- 14:15 – 16:00 ok?
- or 15:15 – 17:00 ?
- or 16:15 – 18:00 ?
Topics

Possible Lectures/Workshops:

- Introduction Batch-System
- Software packages and Parallelization
- Programming in Java, Fortran, C
- Parallelization with MPI/OpenMP
- Grid access and Grid usage

User Contributions:

- ???
Thank you for participating.