On the Design of a Java Computer Algebra System

Heinz Kredel

PPPJ 2006, Mannheim
Introduction

- object oriented design of a computer algebra system
 = software collection for symbolic (non-numeric) computations
- type safe through Java generic types
- thread safe, ready for multicore CPUs
- dynamic memory system with GC
- 64-bit ready
- jython (Java Python) front end
Overview

• Introduction
• Types
• Classes
• Functionality
• Implementation
• Conclusions
Polynomials

\[p \in R = C[x_1, \ldots, x_n] \]

\[p = 3x_1^2x_3^4 + 7x_2^5 - 61 \in \mathbb{Z}[x_1, x_2, x_3] \]

\[p = T \to C \]

\[x_1^2x_3^4 \to 3, \ x_2^5 \to 7, \ x_1^0x_2^0x_3^0 \to -61 \]

else \[x_1^{e_1}x_2^{e_2}x_3^{e_3} \to 0 \]

- multivariate polynomials
- polynomial ring
 - in n variables
 - over a coefficient ring
- polynomials as mappings
 - from terms to coefficients
Polynomials (cont.)

one: \[x_1^0 x_2^0 \ldots x_n^0 \rightarrow 1 \]
zero: \[
\begin{align*}
\end{align*}
\]

\[x_1^2 x_3^4 >_T x_2^5 \]

- mappings to zero are not stored
- terms are ordered / sorted

\[x_j * x_i = c_{ij} x_i x_j + p_{ij} \]

\[1 \leq i < j \leq n, \ 0 \neq c_{ij} \in C, \ x_i x_j >_T p_{ij} \in R \]

- polynomials with non-commutative multiplication
- e.g. commutative \(c_{ij}=1, p_{ij}=0 \)
Type structure

- **Element**
 - C extends Element<C>
 - C extends RingElem<C>
 - C extends GcdRingElem<C>
 - C extends StarRingElem<C>
 - C extends AbelianGroupElem<C>
 - C extends MonoidElem<C>

- **AbelianGroupElem**
- **MonoidElem**
- **RingElem**
- **GcdRingElem**
- **StarRingElem**
Ring element creation

- recursive type for coefficients and polynomials
- creation of ZERO and ONE needs information about the ring
- \texttt{new C()} not allowed in Java, \(C\) type parameter
- solution with factory pattern: \texttt{RingFactory}
- factory has sufficient information for creation of ring elements
- eventually has references to other factories, e.g. for coefficients
Coefficients

- e.g. BigRational, BigInteger
- implement both interfaces
- creation of rational number 2 from long 2:
 - new BigRational(2)
 - cfac.fromInteger(2)
- creation of rational number 1/2 from two longs:
 - new BigRational(1, 2)
 - cfac.parse("1/2")
Polynomials

- `GenPolynomial<C extends RingElem<C>>`
- `C` is coefficient type in the following
- `implements RingElem<GenPolynomial<C>>`
- `factory is GenPolynomialRing<...>`
- `implements RingFactory<GenPolynomial<C>>`
- `factory constructors require coefficient factory parameter`
Polynomial creation

- types are
 - `GenPolynomial<BigRational>`
 - `GenPolynomialRing<BigRational>`

- creation is
 - `new GenPolynomialRing<BigRational>(cfac, 5)`
 - `pfac.getONE()`
 - `pfac.parse("1")`

- polynomials as coefficients
 - `GenPolynomial<GenPolynomial<BigRational>>`
 - `GenPolynomialRing<GenPolynomial<...>>>(pfac, 3)`
Solvable polynomials

- extend generic polynomials
- called GenSolvablePolynomial
- inherit additive methods
- override `clone()` and `multiply()`
- uses factory for solvable polynomials also in inherited methods, hide super class factory
- factory stores table of relations \(x_j * x_i = c_{ij} x_i x_j + p_{ij} \)
- constructors permit `RelationTable` parameters (assumed commutative if omitted)
Polynomial types (1)
Ring element functionality

• C is type parameter

• C sum(C S), C subtract(C S), C negate(), C abs()

• C multiply(C s), C divide(C s), C remainder(C s), C inverse()

• boolean isZERO(), isONE(), isUnit(), int signum()

• equals(Object b), int hashCode(), int compareTo(C b)

• C clone() versus C copy(C a)

• Serializable interface is implemented
Ring factory functionality

- create 0 and 1
 - C getZERO(), C getONE()
- C copy(C a)
- embed integers C fromInteger(long a)
 - C fromInteger(java.math.BigInteger a)
- random elements C random(int n)
- parse string representations
 - C parse(String s), C parse(Reader r)
- isCommutative(), isAssociative()
Polynomial factory constructors

- coefficient factory of the corresponding type
- number of variables
- term order (optional)
- names of the variables (optional)

\[x_1^2 x_3^4 >_T x_2^5 \]

\texttt{GenPolynomialRing\textless C\textgreater (}
\texttt{RingFactory\textless C\textgreater cf, int n,}
\texttt{TermOrder t, String[] v)}
Polynomial factory functionality

- ring factory methods plus more specific methods
- `GenPolynomial<C> random(int k, int l, int d, float q, Random rnd)`
- embed and restrict polynomial ring to ring with more or less variables
 - `GenPolynomialRing<C> extend(int i)`
 - `GenPolynomialRing<C> contract(int i)`
 - `GenPolynomialRing<C> reverse()`
- handle term order adjustments
Polynomial functionality

- ring element methods plus more specific methods
- constructors all require a polynomial factory
 - GenPolynomial(GenPolynomialRing<C> r, C c, ExpVector e)
 - GenPolynomial(GenPolynomialRing<C> r, SortedMap<ExpVector, C> v)
- access parts of polynomials
 - ExpVector leadingExpVector()
 - C leadingBaseCoefficient()
 - Map.Entry<ExpVector, C> leadingMonomial()
- extend and contract polynomials
Example

```java
BigInteger z = new BigInteger();
TermOrder to = new TermOrder();
String[] vars = new String[] {"x1", "x2", "x3"};
GenPolynomialRing<BigInteger> ring
    = new GenPolynomialRing<BigInteger>(z, 3, to, vars);

GenPolynomial<BigInteger> pol
    = ring.parse("3 x1^2 x3^4 + 7 x2^5 - 61");

toString output:
ring = BigInteger(x1, x2, x3) IGRLEX
pol = GenPolynomial[
    3 (4,0,2), 7 (0,5,0), -61 (0,0,0) ]
pol = 3 x1^2 * x3^4 + 7 x2^5 - 61
```
Example (cont.)

\[
p1 = \text{pol.subtract(pol)};
p2 = \text{pol.multiply(pol)};
\]

\[
p1 = \text{GenPolynomial[} \ \]
p1 = 0
p2 = 9 x1^4 * x3^8 + 42 x1^2 * x2^5 * x3^4 + 49 x2^10
 - 366 x1^2 * x3^4 - 854 x2^5 + 3721
\]
Solvable polynomials

- extend generic polynomials, new multiplication
- want: implement ring element with solvable polynomial as type parameter
 - `RingElem<GenSolvablePolynomial<C>>`
- but: already implement ring element with polynomial as type parameter by inheritance
 - `RingElem<GenPolynomial<C>>`
- problem because type erasure makes them equal
- Java forbids implementation of same interface twice
Solvable polynomial functionality

- non commutative multiplication
 - multiply(GenSolvablePolynomial\(<C> \) p)
 - multiply(C b, ExpVector e)
 - multiply\textit{Left}(C b, ExpVector e)

- return type is GenSolvablePolynomial\(<C> \)

- but \textit{sum()} returns formal type
 GenPolynomial\(<C> \) but run time type
 GenSolvablePolynomial\(<C> \)

- so one must often use a cast
 \((\text{GenSolvablePolynomial}\(<C> \)) \ p.\text{sum}(q)\)
Solvable polynomial factory

- same problem with interface implementation as for solvable polynomials
- factory constructor with relation table
 - `GenSolvablePolynomialRing<C>(RingFactory<C> cf, int n, TermOrder t, RelationTable<C> rt)`
- e.g. relation table for Weyl algebras
 - `(new WeylRelations<BigRational>(spfac)).generate()`
- `RelationTable(GenSolvablePolynomialRing<C> r)`
- problem with constructor initialization sequence
Example (cont.)

```
GenSolvablePolynomialRing<BigRational> sfac =
    new GenSolvablePolynomialRing<BigRational>(z,6);

WeylRelations<BigRational> wl =
    new WeylRelations<BigRational>(sfac);
wl.generate();

RelationTable(
    (x3), (x0), (x0 * x3 + 1),
    (x5), (x2), (x2 * x5 + 1),
    (x4), (x1), (x1 * x4 + 1)
)`
Implementation

- 100 classes and interfaces
- plus 50 JUnit test cases
- JDK 1.5 with generic types
- logging with Apache Log4j
- some jython scripts
- javadoc API documentation
- revision control with subversion
- build tool is Apache Ant
- open source, license is GPL
Coefficient implementation

• BigInteger based on java.math.BigInteger
• implemented like GnuMP library
• using facade pattern to implement RingElem (and RingFactory) interface
• about 10 to 15 times faster than the Modula-2 implementation SACI (in 2000)
• other classes: BigRational, ModInteger, BigComplex, BigQuaternion and BigOctonion
• AlgebraicNumber class can be used over BigRational or ModInteger
Polynomial implementation

- are (ordered) maps from terms to coefficients
- implemented with SortedMap interface and TreeMap class from Java collections framework
- alternative implementation with Map and LinkedListMap, which preserves the insertion order
- but had inferior performance
- terms (the keys) are implemented by class ExpVector
- coefficients implement RingElem interface
Polynomial implementation (cont.)

- ExpVector is dense array of exponents (as long) of variables
- sparse array, array of int, Long not implemented
- would like to have ExpVector<long>
- polynomials are intended as immutable objects
- object variables are final and the map is not modified after creation
- eventually wrap with unmodifiableSortedMap()
- avoids synchronization in multi threaded code
Term order implementation

- need comparators for `SortedMap<ExpVector,C>`
- generated from class `TermOrder`
- has methods
  - `getDescendComparator()`
  - `getAscendComparator()`
- implemented all practically used orders
  - (inverse) lexicographical
  - (inverse) graded, i.e. total degree
  - defined by weight matrices
  - elimination orders (split orders)
Solvable polynomial implementation

- relations are stored in `RelationTable` object in the factory
- optimized for fast detection of commutative variables
  \[ x_j \ast x_i = x_i x_j \]
- overhead to polynomial multiplication is 20%
- table is modified to store relations of powers of variables
  \[ x_j^{e_i} \ast x_i^{e_k} = c_{ikjl} x_i^{e_k} x_j^{e_l} + p_{ikjl} \]
- update methods are synchronized
- additive methods are from the superclass
Advanced algorithms

- polynomial reduction (a kind of division with remainder for multivariate polynomials)
- Buchbergers algorithm to compute Groebner bases for sets of polynomials (a kind of Gauss elimination with Euclidean division)
- not much (mathematical) optimization yet, simple structure used also for parallel implementation
- sequential, parallel and distributed versions
- non-commutative left, right and two-sided versions
- modules over polynomial rings and syzygies
Parallel Groebner bases

- work queue of polynomials `CriticalPairList`
- with synchronized methods `get()`, `put()`, `removeNext()` to modify data structure
- scales well for 8 CPUs on a well structured problem (see next figures)
- distributed version uses some kind of a distributed list to store polynomials of set (implemented by a DHT)
- use of object serialization for transport of polynomials over the network
Conclusions (1)

- sound object oriented design and implementation of a library for algebraic computations
- type safe through generic type parameters
- as expressive as categories and domains in Axiom
- multivariate polynomials with multi precision coefficients
- used for a large collection of Groebner base algorithms
- first OO design and implementation of non-commutative polynomials and Groebner bases
Conclusions (2)

- employs various design patterns, e.g. creational patterns (factory), facade pattern
- working horses are from the Java collection framework
- parallel and distributed implementation draw heavily on the Java packages for concurrent programming and networking
- suitability of the design is exemplified by the successful implementation of a large part of `additive ideal theory', e.g. different Groebner base and syzygy algorithms
Conclusions (3)

- Java platform: 64-bit, garbage collection, threads
- Jython wrapper for interactive use
- Problems
  - type erasure in generic interfaces
  - want restrictions on constructors in interfaces
  - quite type safe: polynomials e.g. in 2 and in 3 variables have the same type and at run time an exception will most likely be thrown
- Future
  - more `multiplicative ideal theory', e.g. factorization
Thank you

• Questions?
• Comments?
• http://krum.rz.uni-mannheim.de/jas

• Thanks to
  – Thomas Becker
  – Aki Yoshida
  – the referees
  – all others