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Introduction

● object oriented design of a computer algebra 
system

= software collection for symbolic (non-numeric) 
computations

● type safe through Java generic types
● thread safe, ready for multicore CPUs
● dynamic memory system with GC
● 64-bit ready
● jython (Java Python) front end



Overview

● Introduction
● Types
● Classes
● Functionality
● Implementation
● Conclusions



Polynomials

● multivariate polynomials
● polynomial ring 

– in n variables 
– over a coefficient ring

● polynomials as mappings
– from terms to coefficients

p ∈ R = C [ x1 , , x n]

p = 3 x1
2 x 3

4
 7 x 2

5
− 61 ∈ ℤ[ x1 , x2 , x 3]

p = T  C

x1
2 x 3

4
 3, x 2

5
 7, x 1

0 x2
0 x3

0
−61

else x 1
e1 x 2

e2 x3
e3  0



Polynomials (cont.)

● mappings to zero are not 
stored

● terms are ordered / sorted

● polynomials with non-
commutative 
multiplication

● e.g. commutative

one : { x1
0 x 2

0
 xn

0
1 }

zero : { }

x1
2 x 3

4
T x2

5

x j∗ x i = c ij x i x j  pij

1  i  j  n , 0 ≠ cij ∈ C ,

x i x j T pij ∈ R

cij=1, p ij=0



Type structure



Ring element creation

● recursive type for coefficients and polynomials
● creation of ZERO and ONE needs information 

about the ring
● new C() not allowed in Java, C type parameter
● solution with factory pattern: RingFactory 
● factory has sufficient information for creation of 

ring elements
● eventually has references to other factories, e.g. 

for coefficients



Coefficients

● e.g. BigRational, BigInteger
● implement both interfaces
● creation of rational number 2 from long 2: 

– new BigRational(2)

– cfac.fromInteger(2)

● creation of rational number 1/2 from two longs: 
– new BigRational(1,2)

– cfac.parse(“1/2”)



Polynomials

● GenPolynomial<C extends RingElem<C>>

● C is coefficient type in the following

● implements RingElem<GenPolynomial<C>>

● factory is GenPolynomialRing<...>
● implements 
RingFactory<GenPolynomial<C>>

● factory constructors require coefficient factory 
parameter



Polynomial creation

● types are
– GenPolynomial<BigRational>

– GenPolynomialRing<BigRational>

● creation is
– new GenPolynomialRing<BigRational>(cfac,5)

– pfac.getONE()

– pfac.parse(“1”)

● polynomials as coefficients
– GenPolynomial<GenPolynomial<BigRational>>

– GenPolynomialRing<GenPolynomial<...>>(pfac,3)



Solvable polynomials

● extend generic polynomials
● called GenSolvablePolynomial
● inherit additive methods 
● override clone() and multiply()
● uses factory for solvable polynomials also in 

inherited methods, hide super class factory
● factory stores table of  relations
● constructors permit RelationTable 

parameters (assumed commutative if omitted)

x j∗ x i = c ij x i x j  pij



Polynomial types (1)



Ring element functionality
● C is type parameter
● C sum(C S), C subtract(C S), C negate(), 
C abs()

● C multiply(C s), C divide(C s), C 
remainder(C s), C inverse() 

● boolean isZERO(), isONE(), isUnit(), int 
signum()

● equals(Object b), int hashCode(), int 
compareTo(C b)

● C clone() versus C copy(C a)

● Serializable interface is implemented



Ring factory functionality

● create 0 and 1
–  C getZERO(), C getONE()

● C copy(C a)

● embed integers    C fromInteger(long a)
– C fromInteger(java.math.BigInteger a)

● random elements    C random(int n)
● parse string representations

– C parse(String s), C parse(Reader r)

● isCommutative(), isAssociative()



Polynomial factory constructors

● coefficient factory of the corresponding type
● number of variables
● term order (optional)
● names of the variables (optional)
● GenPolynomialRing<C>( 
RingFactory<C> cf, int n, 
TermOrder t, String[] v)

x1
2 x3

4
T x2

5



Polynomial factory functionality

● ring factory methods plus more specific methods
● GenPolynomial<C> random(int k, 
int l, int d, float q, Random rnd)

● embed and restrict polynomial ring to ring with 
more or less variables
– GenPolynomialRing<C> extend(int i)

– GenPolynomialRing<C> contract(int i)

– GenPolynomialRing<C> reverse()

● handle term order adjustments



Polynomial functionality
● ring element methods plus more specific methods
● constructors all require a polynomial factory 

– GenPolynomial(GenPolynomialRing<C> r, C c, 
ExpVector e)

– GenPolynomial(GenPolynomialRing<C> r, 
SortedMap<ExpVector,C> v)

● access parts of polynomials
– ExpVector leadingExpVector()

– C leadingBaseCoefficient()

– Map.Entry<ExpVector,C> leadingMonomial()

● extend and contract polynomials



Class functionality (1)



Example
BigInteger z = new BigInteger();
TermOrder to = new TermOrder();
String[] vars = new String[] { "x1", "x2", "x3" };
GenPolynomialRing<BigInteger> ring

 = new GenPolynomialRing<BigInteger>(z,3,to,vars);

GenPolynomial<BigInteger> pol
 = ring.parse( "3 x1^2 x3^4 + 7 x2^5 - 61" );

toString output:
ring = BigInteger(x1, x2, x3) IGRLEX
pol = GenPolynomial[ 
      3 (4,0,2), 7 (0,5,0), -61 (0,0,0) ]
pol = 3 x1^2 * x3^4 + 7 x2^5 - 61



Example (cont.)

p1 = pol.subtract(pol);
p2 = pol.multiply(pol);

p1 = GenPolynomial[  ]
p1 = 0
p2 =  9 x1^4 * x3^8 + 42 x1^2 * x2^5 * x3^4 
     + 49 x2^10 
     - 366 x1^2 * x3^4 - 854 x2^5 + 3721



Solvable polynomials

● extend generic polynomials, new multiplication
● want: implement ring element with solvable 

polynomial as type parameter
– RingElem<GenSolvablePolynomial<C>>

● but: already implement ring element with 
polynomial as type parameter by inheritance
– RingElem<GenPolynomial<C>>

● problem because type erasure makes them equal
● Java forbids implementation of same interface 

twice



Solvable polynomial functionality

● non commutative multiplication
– multiply(GenSolvablePolynomial<C> p)

– multiply(C b, ExpVector e)

– multiplyLeft(C b, ExpVector e)

● return type is GenSolvablePolynomial<C>
● but sum() returns formal type 
GenPolynomial<C> but run time type  
GenSolvablePolynomial<C>

● so one must often use a cast 
(GenSolvablePolynomial<C>) p.sum(q)



Solvable polynomial factory

● same problem with interface implementation as for 
solvable polynomials

● factory constructor with relation table
– GenSolvablePolynomialRing<C>( 
RingFactory<C> cf, int n, TermOrder t, 
RelationTable<C> rt)

● e.g. relation table for Weyl algebras
– (new WeylRelations<BigRational>(spfac)). 
generate()

● RelationTable(GenSolvablePolynomialRing<C> r)

● problem with constructor initialization sequence



Example (cont.)

GenSolvablePolynomialRing<BigRational> sfac =
 new GenSolvablePolynomialRing<BigRational>(z,6);

WeylRelations<BigRational> wl = 
   new WeylRelations<BigRational>(sfac);
wl.generate();

RelationTable(
( x3 ), ( x0 ), ( x0 * x3 + 1  ),
( x5 ), ( x2 ), ( x2 * x5 + 1  ),
( x4 ), ( x1 ), ( x1 * x4 + 1  )
)



Implementation

● 100 classes and interfaces
● plus 50 JUnit test cases
● JDK 1.5 with generic types
● logging with Apache Log4j
● some jython scripts
● javadoc API documentation
● revision control with subversion
● build tool is Apache Ant
● open source, license is GPL



Coefficient implementation

● BigInteger based on java.math.BigInteger
● implemented like GnuMP library
● using facade pattern to implement RingElem 

(and RingFactory) interface
● about 10 to 15 times faster than the Modula-2 

implementation SACI (in 2000)
● other classes: BigRational, ModInteger, 
BigComplex, BigQuaternion and BigOctonion

● AlgebraicNumber class can be used over 
BigRational or ModInteger



Polynomial implementation

● are (ordered) maps from terms to coefficients
● implemented with SortedMap interface and 
TreeMap class from Java collections framework

● alternative implementation with Map and 
LinkedHashMap, which preserves the insertion 
order

● but had inferior performance
● terms (the keys) are implemented by class 
ExpVector

● coefficients implement RingElem interface



Polynomial implementation (cont.)

● ExpVector is dense array of exponents (as long) 
of variables

● sparse array, array of int, Long not implemented
● would like to have ExpVector<long>
● polynomials are intended as immutable objects
● object variables are final and the map is not 

modified after creation
● eventually wrap with unmodifiableSortedMap()
● avoids synchronization in multi threaded code



Term order implementation

● need comparators for SortedMap<ExpVector,C>
● generated from class TermOrder
● has methods 

– getDescendComparator()

– getAscendComparator()

● implemented all practically used orders
– (inverse) lexicographical 
– (inverse) graded, i.e. total degree
– defined by weight matrices
– elimination orders (split orders)



Solvable polynomial implementation

● relations are stored in RelationTable object in 
the factory 

● optimized for fast detection of commutative 
variables

● overhead to polynomial multiplication is 20%
● table is modified to store relations of powers of 

variables
● update methods are synchronized
● additive methods are from the superclass

x j∗ x i = x i x j

x j
el∗ x i

e k = cikjl x i
e k x j

e l  pikjl



Advanced algorithms

● polynomial reduction (a kind of division with 
remainder for multivariate polynomials)

● Buchbergers algorithm to compute Groebner bases 
for sets of polynomials (a kind of Gauss 
elimination with Euclidean division)

● not much (mathematical) optimization yet, simple 
structure used also for parallel implementation

● sequential, parallel and distributed versions
● non-commutative left, right and two-sided versions
● modules over polynomial rings and syzygies



Parallel Groebner bases

● work queue of polynomials CriticalPairList
● with synchronized methods get(), put(), 
removeNext() to modify data structure

● scales well for 8 CPUs on a well structured 
problem (see next figures)

● distributed version uses some kind of a 
distributed list to store polynomials of set 
(implemented by a DHT)

● use of object serialization for transport of 
polynomials over the network



Performance (1)



Conclusions (1)

● sound object oriented design and implementation of 
a library for algebraic computations

● type safe trough generic type parameters
● as expressive as categories and domains in Axiom
● multivariate polynomials with multi precision 

coefficients
● used for a large collection of Groebner base 

algorithms
● first OO design and implementation of non-

commutative polynomials and Groebner bases



Conclusions (2)

● employs various design patterns, e.g. creational 
patterns (factory), facade pattern

● working horses are from the Java collection 
framework

● parallel and distributed implementation draw 
heavily on the Java packages for concurrent 
programming and networking

● suitability of the design is exemplified by the 
successful implementation of a large part of `additive 
ideal theory', e.g.  different Groebner base and syzygy 
algorithms



Conclusions (3)

● Java platform: 64-bit, garbage collection, threads
● Jython wrapper for interactive use
● Problems 

– type erasure in generic interfaces
– want restrictions on constructors in interfaces
– quite type safe: polynomials e.g. in 2 and in 3 

variables have the same type and at run time an 
exception will most likely be thrown

● Future
– more `multiplicative ideal theory', e.g. factorization



Thank you

● Questions?
● Comments?
● http://krum.rz.uni-mannheim.de/jas
● Thanks to

– Thomas Becker
– Aki Yoshida
– the referees
– all others

http://krum.rz.uni-mannheim.de/jas

