
Distributed parallel
Gröbner bases computation

Heinz Kredel

ECDS at CISIS 2009, Fukuoka

Overview

● Introduction to JAS
● Gröbner bases

– problems with parallel computation

– sequential and parallel algorithm
● Distributed algorithm

– execution middle-ware

– data structure middle-ware

– workload paradox
● Conclusions and future work

3

Java Algebra System (JAS)

● object oriented design of a computer algebra system

= software collection for symbolic (non-numeric)
computations

● type safe through Java generic types
● thread safe, ready for multi-core CPUs
● use dynamic memory system with GC
● 64-bit ready
● jython (Java Python) interactive scripting front end

Implementation overview

● 200+ classes and interfaces
● plus ~90 JUnit test cases
● uses JDK 1.6 with generic types

● Javadoc API documentation
● logging with Apache Log4j
● build tool is Apache Ant
● revision control with Subversion

● jython (Java Python) scripts
● support for Sage like polynomial expressions

● open source, license is GPL or LGPL

Polynomial functionality

Example: Legendre polynomials
P[0] = 1; P[1] = x;
P[i] = 1/i ((2i-1) * x * P[i-1] - (i-1) * P[i-2])

BigRational fac = new BigRational();
String[] var = new String[]{ "x" };
GenPolynomialRing<BigRational> ring
 = new GenPolynomialRing<BigRational>(fac,1,var);
List<GenPolynomial<BigRational>> P
 = new ArrayList<GenPolynomial<BigRational>>(n);
GenPolynomial<BigRational> t, one, x, xc, xn; BigRational n21, nn;

one = ring.getONE(); x = ring.univariate(0);
P.add(one); P.add(x);
for (int i = 2; i < n; i++) {
 n21 = new BigRational(2*i-1); xc = x.multiply(n21);
 t = xc.multiply(P.get(i-1));
 nn = new BigRational(i-1); xc = P.get(i-2).multiply(nn);
 t = t.subtract(xc); nn = new BigRational(1,i);
 t = t.multiply(nn); P.add(t);
}
 int i = 0;
 for (GenPolynomial<BigRational> p : P) {
 System.out.println("P["+(i++)+"] = " + P);
 }

Overview

● Introduction to JAS
● Gröbner bases

– problems with parallel computation

– sequential and parallel algorithm
● Distributed algorithm

– execution middle-ware

– data structure middle-ware

– workload paradox
● Conclusions and future work

Gröbner bases

● canonical bases in polynomial rings
● like Gauss elimination in linear algebra
● like Euclidean algorithm for univariate polynomials
● with a Gröbner base many problems can be solved

– solution of non-linear systems of equations

– existence of solutions

– solution of parametric equations
● slower than multivariate Newton iteration in numerics
● but in computer algebra no round-off errors
● so guarantied correct results

R = C [x1 , , xn]

Buchberger algorithm
algorithm: G = GB(F)
input: F a list of polynomials in R[x1,...,xn]
output: G a Gröbner Base of ideal(F)

G = F;
B = { (f,g) | f, g in G, f != g };
while (B != {}) {
 select and remove (f,g) from B;
 s = S-polynomial(f,g);
 h = normalform(G,s); // expensive operation
 if (h != 0) {
 for (f in G) { add (f,h) to B }
 add h to G;
 }
} // termination ? Size of B changes
return G

Problems with GB algorithm
● requires exponential space (in the number of variables)

● even for arbitrary many processors no polynomial
time algorithm will exist

● highly data depended

– number of pairs unknown (size of B)

– size of polynomials s and h unknown

– size of coefficients
– degrees, number of terms

● management of B is sequential
● strategy for the selection of pairs from B

– depends moreover on speed of reducers

parallel computation hypothesis

Gröbner bases classes

Overview

● Introduction to JAS
● Gröbner bases

– problems with parallel computation

– sequential and parallel algorithm
● Distributed algorithm

– execution middle-ware

– data structure middle-ware

– workload paradox
● Conclusions and future work

bwGRiD cluster architecture

● 8-core CPU nodes @ 2.83 GHz, 16GB, 140 nodes
● shared NFS/Lustre home directories
● InfiniBand and 1 G Ethernet interconnects
● managed by PBS batch system with Maui scheduler
● running Java 64bit server VM 1.6 with 4+GB memory
● start Java VMs with daemons on allocated nodes
● communication via TCP/IP interface to InfiniBand
● no Java high performance interface to InfiniBand
● alternative Java via MPI not studied
● other middle-ware ProActive or GridGain not studied

Distributed GB computation
● main method GB()
● distribute list G via distributed hash table (DHT)
● start ReducerServer threads

● method clientPart() starts ReducerClients

● select pair and send to distributed client

a) send polynomials them-selfs

b) send index of polynomial in G
● client performs S-polynomial and normalform

computation sends result back to master
● master eventually inserts new pairs to B and adds

polynomial to G in DHT

mtype = { Get, Fin, Pair, Hpol };
proctype ReducerServer (chan pairs) {
 do
 :: idler++; pairs ? Get;
 if
 :: (! nextPair && idler == PROCNUM) -> pairs ! Fin; break;
 :: (! nextPair) -> skip; // sleep delay
 :: else skip;
 fi;
 idler--; getPair(); /* take pair from queue */
 pairs ! Pair; /* send to client */
 progress: skip;
 pairs ? Hpol; /* receive result */
 addPair(); /* add new pairs to queue */
 od;
}
 proctype ReducerClient (chan pairs) {
 do
 :: pairs ! Get;
 if
 :: pairs ? Fin -> break;
 :: pairs ? Pair -> /*compute h-pol*/ pairs ! Hpol;
 fi
 od
 }

ExecutableServer

Middle-ware overview

master node client node
InfiniBand

Distributed
Thread

clientPart()

Reducer
Client

DHT
Client

GBDist

Distributed
ThreadPool

GB()
DHT
Client

Reducer
Server

DHT Server

Execution middle-ware (nodes)

● on compute nodes do basic bootstrapping

– start daemon class ExecutableServer

– listens on connections (no security constrains)

– start thread with Executor for each connection

– receives (serialized) objects with
RemoteExecutable interface

– execute the run() method

– communication and further logic is
implemented in the run() method

– multiple processes as threads in one JVM

Execution middle-ware (master)

● on master node

– start DistThreadPool similar to ThreadPool

– starts threads for each compute node

– list of compute nodes taken from PBS

– starts connections to all nodes with
ExecutableChannel

– can start multiple tasks on nodes to use
multiple CPU cores via open(n) method

– method addJob() on master

– send a job to a remote node and wait until
termination (RMI like)

Execution middle-ware usage

● Gröbner base master GBDist

● initialize DistThreadPool with PBS node list

● initialize GroebnerBaseDistributed

● execute() method of GBDist

– add remote computation classes as jobs

– execute clientPart() method in jobs
● is ReducerClient above

– calls main GB() method
● is ReducerServer above

Data structure middle-ware

● sending of polynomials involves

– serialization and de-serialization time

– and communication time
● avoid sending via a distributed data structure
● implemented as distributed list
● runs independently of main GB master
● setup in GroebnerBaseDistributed constructor and
clientPart() method

● then only indexes of polynomials need to be
communicated

Distributed polynomial list

● distributed list implemented as distributed hash
table (DHT)

● key is list index
● class DistHashTable similar to java.util.HashMap

● methods clear(), get() and put() as in HashMap

● method getWait(key) waits until a value for a key
has arrived

● method putWait(key,value) waits until value has
arrived at the master and is received back

● no guaranty that value is received on all nodes

DHT implementation (1)

● implemented as central control DHT
● client part on node uses TreeMap as store

● client DistributedHashTable connects to master

● master class DistributedHashTableServer

● put() methods send key-value pair to a master

● master then broadcasts key-value pair to all nodes
● get() method takes value from local TreeMap

DHT implementation (2)

● in future implement DHT with decentralized control
● in future implement with generic types
● in master process de-serialization of polynomials

should be avoided
● broadcast to clients in master serializes

polynomials for every client again
● master is co-located to master of GB computation

on same compute node
● this doubles memory requirements on master node
● this increases the CPU load on the master

– limits scaling of master for more nodes

Performance

● multi-threaded computation

– scales well to 8 CPU cores

– 0.4 % overhead on one thread to sequential
● distributed computation

– scales only to 4 compute nodes

– absolute computing times comparable to
multi-threaded case for up to 4 nodes

● not too much communication overhead
● can use multiple cores on nodes

– InfiniBand is essential
● workload paradox, selection strategies

Multi-threaded Gröbner basis

Distributed Gröbner basis

Workload paradox

● parallel: 135 - 154 polynomials, 663 - 686 pairs
● distributed: 171 - 338 polynomials, 699 - 862 pairs
● possible pairs 9.045 – 56.953

– rest avoided with 'criterions' and strategies
● different computation times in parallel reduction

– pair polynomial size varies

– size of polynomials in list varies
● different order of new pairs inserted in B
● different order of pairs removed from B

Selection strategies

● best to use the same order of polynomials and
pairs as in sequential algorithm

● selection algorithm is sequential

– so optimizations reduce parallelism
● Amrhein & Gloor & Küchlin:

– work parallel: n reductions in parallel

– search parallel: select best from k results
● Kredel:

– n reductions in parallel, select first finished

– select result in same sequence as reduction
is started, not the first finished

● Attardi & Traverso: 'strategy-accurate' algorithm

– rest reduction sequential

– only top-reduction in parallel

Conclusions

● first version of a distributed GB algorithm
● runs on a HPC cluster in PBS environment
● shared memory parallel version scales up to 8 CPUs
● runtime of distributed version is comparable to parallel

version
● can the workload paradox be solved?
● developed classes fit in Gröbner base class hierarchy
● new package is type-safe with generic types (with the

exception of the distributed hash table)

Future work

● profile and study run-time behavior in detail
● investigate other grid middle-ware
● improve integration into the grid environment
● improve serialization in distributed list
● study other result selection strategies
● develop hybrid GB algorithm

– distributed and multi-threaded on nodes
● compute sequential Gröbner bases with respect to

different term orders in parallel

34

Thank you

● Questions or Comments?
● http://krum.rz.uni-mannheim.de/jas
● Thanks to

– Raphael Jolly

– Thomas Becker

– Hans-Günther Kruse

– bwGRiD for providing computing time

– Adrian Schneider

– the referees

– and other colleagues

http://krum.rz.uni-mannheim.de/jas

	title
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Schluss

