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Java Algebra System (JAS)

● object oriented design of a computer algebra system

= software collection for symbolic (non-numeric) 
computations

● type safe through Java generic types
● thread safe, ready for multi-core CPUs
● use dynamic memory system with GC
● 64-bit ready
● jython (Java Python) interactive scripting front end



Implementation overview

● 200+ classes and interfaces
● plus ~90 JUnit test cases
● uses JDK 1.6 with generic types

● Javadoc API documentation
● logging with Apache Log4j
● build tool is Apache Ant
● revision control with Subversion

● jython (Java Python) scripts 
● support for Sage like polynomial expressions

● open source, license is GPL or LGPL



Polynomial functionality



Example: Legendre polynomials
P[0] = 1;    P[1] = x;
P[i] = 1/i ( (2i-1) * x * P[i-1] - (i-1) * P[i-2] )

BigRational fac = new BigRational();  
String[] var = new String[]{ "x" };
GenPolynomialRing<BigRational> ring 
 = new GenPolynomialRing<BigRational>(fac,1,var);
List<GenPolynomial<BigRational>> P 
 = new ArrayList<GenPolynomial<BigRational>>(n);
GenPolynomial<BigRational> t, one, x, xc, xn; BigRational n21, nn;

one = ring.getONE(); x = ring.univariate(0);
P.add( one ); P.add( x );
for ( int i = 2; i < n; i++ ) {
        n21 = new BigRational( 2*i-1 );  xc = x.multiply( n21 );
        t = xc.multiply( P.get(i-1) ); 
        nn = new BigRational( i-1 ); xc = P.get(i-2).multiply( nn );
        t = t.subtract( xc );  nn = new BigRational(1,i);
        t = t.multiply( nn ); P.add( t );
}
      int i = 0;              
      for ( GenPolynomial<BigRational> p : P ) {
          System.out.println("P["+(i++)+"] = " + P);
      }



Overview

● Introduction to JAS
● Gröbner bases

– problems with parallel computation

– sequential and parallel algorithm
● Distributed algorithm

– execution middle-ware

– data structure middle-ware

– workload paradox
● Conclusions and future work



Gröbner bases

● canonical bases in polynomial rings
● like Gauss elimination in linear algebra
● like Euclidean algorithm for univariate polynomials
● with a Gröbner base many problems can be solved

– solution of non-linear systems of equations

– existence of solutions

– solution of parametric equations
● slower than multivariate Newton iteration in numerics
● but in computer algebra no round-off errors
● so guarantied correct results 

R = C [ x1 , , xn ]



Buchberger algorithm
algorithm: G = GB( F )
input: F a list of polynomials in R[x1,...,xn]
output: G a Gröbner Base of ideal(F)

G = F;
B = { (f,g) | f, g in G, f != g };
while ( B != {} ) {
  select and remove (f,g) from B;
  s = S-polynomial(f,g);
  h = normalform(G,s); // expensive operation
  if ( h != 0 ) {
     for ( f in G ) { add (f,h) to B }
     add h to G;
  }
} // termination ? Size of B changes
return G



Problems with GB algorithm
● requires exponential space (in the number of variables)

● even for arbitrary many processors no polynomial 
time algorithm will exist

● highly data depended 

– number of pairs unknown (size of B)

– size of polynomials s and h unknown

– size of coefficients
– degrees, number of terms

● management of B is sequential
● strategy for the selection of pairs from B

– depends moreover on speed of reducers

parallel computation hypothesis



Gröbner bases classes
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bwGRiD cluster architecture

● 8-core CPU nodes @ 2.83 GHz, 16GB, 140 nodes 
● shared NFS/Lustre home directories
● InfiniBand and 1 G Ethernet interconnects
● managed by PBS batch system with Maui scheduler
● running Java 64bit server VM 1.6 with 4+GB memory
● start Java VMs with daemons on allocated nodes
● communication via TCP/IP interface to InfiniBand
● no Java high performance interface to InfiniBand
● alternative Java via MPI not studied
● other middle-ware ProActive or GridGain not studied



Distributed GB computation
● main method GB()
● distribute list G via distributed hash table (DHT)
● start ReducerServer threads 

● method clientPart() starts ReducerClients

● select pair and send to distributed client

a) send polynomials them-selfs

b) send index of polynomial in G 
● client performs S-polynomial and normalform 

computation sends result back to master
● master eventually inserts new pairs to B and adds 

polynomial to G in DHT



mtype = { Get, Fin, Pair, Hpol };
proctype ReducerServer (chan pairs) {
 do
 :: idler++; pairs ? Get; 
    if 
    :: ( ! nextPair && idler == PROCNUM ) -> pairs ! Fin; break; 
    :: ( ! nextPair ) -> skip; // sleep delay
    :: else skip;
    fi;
    idler--; getPair(); /* take pair from queue */
    pairs ! Pair; /* send to client */
 progress: skip;
    pairs ? Hpol; /* receive result */ 
    addPair(); /* add new pairs to queue */
 od;
}
    proctype ReducerClient (chan pairs) {
     do 
     :: pairs ! Get;
        if 
        :: pairs ? Fin  -> break;
        :: pairs ? Pair -> /*compute h-pol*/ pairs ! Hpol;
        fi
     od
    }
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Execution middle-ware (nodes)

● on compute nodes do basic bootstrapping

– start daemon class ExecutableServer 

– listens on connections (no security constrains)

– start thread with Executor for each connection

– receives (serialized) objects with 
RemoteExecutable interface

– execute the run() method

– communication and further logic is 
implemented in the run() method

– multiple processes as threads in one JVM



Execution middle-ware (master)

● on master node

– start DistThreadPool similar to ThreadPool

– starts threads for each compute node

– list of compute nodes taken from PBS

– starts connections to all nodes with 
ExecutableChannel 

– can start multiple tasks on nodes to use 
multiple CPU cores via open(n) method

– method addJob() on master 

– send a job to a remote node and wait until 
termination (RMI like)



Execution middle-ware usage

● Gröbner base master GBDist

● initialize DistThreadPool with PBS node list

● initialize GroebnerBaseDistributed 

● execute() method of GBDist

– add remote computation classes as jobs

– execute clientPart() method in jobs
● is ReducerClient above

– calls main GB() method 
● is ReducerServer above



Data structure middle-ware

● sending of polynomials involves

– serialization and de-serialization time

– and communication time
● avoid sending via a distributed data structure
● implemented as distributed list
● runs independently of main GB master
● setup in GroebnerBaseDistributed constructor and 
clientPart() method

● then only indexes of polynomials need to be 
communicated



Distributed polynomial list

● distributed list implemented as distributed hash 
table (DHT)

● key is list index
● class DistHashTable similar to java.util.HashMap

● methods clear(), get() and put() as in HashMap

● method getWait(key) waits until a value for a key 
has arrived 

● method putWait(key,value) waits until value has 
arrived at the master and is received back

● no guaranty that value is received on all nodes



DHT implementation (1)

● implemented as central control DHT
● client part on node uses TreeMap as store

● client DistributedHashTable connects to master

● master class DistributedHashTableServer

● put() methods send key-value pair to a master

● master then broadcasts key-value pair to all nodes
● get() method takes value from local TreeMap



DHT implementation (2)

● in future implement DHT with decentralized control
● in future implement with generic types
● in master process de-serialization of polynomials 

should be avoided
● broadcast to clients in master serializes 

polynomials for every client again
● master is co-located to master of GB computation 

on same compute node
● this doubles memory requirements on master node
● this increases the CPU load on the master 

– limits scaling of master for more nodes



Performance

● multi-threaded computation

– scales well to 8 CPU cores

– 0.4 % overhead on one thread to sequential
● distributed computation

– scales only to 4 compute nodes

– absolute computing times comparable to 
multi-threaded case for up to 4 nodes

● not too much communication overhead
● can use multiple cores on nodes

– InfiniBand is essential
● workload paradox, selection strategies



Multi-threaded Gröbner basis



Distributed Gröbner basis



Workload paradox

● parallel: 135 - 154 polynomials, 663 - 686 pairs
● distributed: 171 - 338 polynomials, 699 - 862 pairs
● possible pairs 9.045 – 56.953

– rest avoided with 'criterions' and strategies 
● different computation times in parallel reduction

– pair polynomial size varies

– size of polynomials in list varies
● different order of new pairs inserted in B
● different order of pairs removed from B









Selection strategies

● best to use the same order of polynomials and 
pairs as in sequential algorithm

● selection algorithm is sequential

– so optimizations reduce parallelism
● Amrhein & Gloor & Küchlin:

– work parallel: n reductions in parallel

– search parallel: select best from k results
● Kredel:

– n reductions in parallel, select first finished

– select result in same sequence as reduction 
is started, not the first finished

● Attardi & Traverso: 'strategy-accurate' algorithm

– rest reduction sequential

– only top-reduction in parallel



Conclusions

● first version of a distributed GB algorithm
● runs on a HPC cluster in PBS environment
● shared memory parallel version scales up to 8 CPUs
● runtime of distributed version is comparable to parallel 

version
● can the workload paradox be solved?
● developed classes fit in Gröbner base class hierarchy
● new package is type-safe with generic types (with the 

exception of the distributed hash table)



Future work

● profile and study run-time behavior in detail
● investigate other grid middle-ware
● improve integration into the grid environment
● improve serialization in distributed list
● study other result selection strategies
● develop hybrid GB algorithm

– distributed and multi-threaded on nodes
● compute sequential Gröbner bases with respect to 

different term orders in parallel
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Thank you

● Questions or Comments?
● http://krum.rz.uni-mannheim.de/jas
● Thanks to

– Raphael Jolly

– Thomas Becker 

– Hans-Günther Kruse

– bwGRiD for providing computing time

– Adrian Schneider

– the referees

– and other colleagues

http://krum.rz.uni-mannheim.de/jas
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