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Abstract. This paper evaluates the suitability of Java as an implemen-
tation language for the foundations of a computer algebra library. The
design of basic arithmetic and multivariate polynomial interfaces and
classes have been presented in [1]. The library is type-safe due to its
design with Java’s generic type parameters and thread-safe using Java’s
concurrent programming facilities. We evaluate some key points of our
library and differences to other computer algebra systems.

1 Introduction

We have presented an object oriented design of a Java Computer Algebra System
(called JAS in the following) as type safe and thread safe approach to computer
algebra in [1–3]. JAS provides a well designed library for algebraic computations
implemented with the aid of Java’s generic types. The library can be used as
any other Java software package or it can be used interactively or interpreted
through an jython (Java Python) front end. The focus of JAS is at the moment
on commutative and solvable polynomials, Groebner bases and applications. By
the use of Java as implementation language, JAS is 64-bit and multi-core cpu
ready. JAS is being developed since 2000 (see the weblog in [3]).

This work is interesting for computer science and mathematics, since it ex-
plores the Java [4] type system for expressiveness and eventual short comings.
Moreover it employs many Java packages, and stresses their design and perfor-
mance in the context of computer algebra, in competition with systems imple-
mented in other programming languages.

JAS contains interfaces and classes for basic arithmetic of, e.g. integers and
rational numbers and multivariate polynomials with such coefficients. Additional
packages in JAS are:

– The package edu.jas.ufd contains classes for unique factorization domains.
Like the interface GreatestCommonDivisor, an abstract class providing com-
monly useful methods and classes with implementations for polynomial re-
mainder sequences and modular algorithms.

– The package edu.jas.ring contains classes for polynomial and solvable
polynomial reduction, Groebner bases and ideal arithmetic as well as thread
parallel and distributed versions of Buchbergers algorithm like Reduction-
Seq, GroebnerBaseParallel and GroebnerBaseDistributed.

– The package edu.jas.module contains classes for module Groebner bases,
syzygies for polynomials and solvable polynomials like ModGroebnerBase or
SolvableSyzygy.

– Finally, the package edu.jas.application contains applications of Groeb-
ner bases, such as ideal intersections and ideal quotients in the classes Ideal
or SolvableIdeal.



The emphasis of this paper is the evaluation of the JAS library design with
respect to the points: interfaces as types, generics and inheritance, dependent
types, method semantics, recursive types, design patterns, code reuse, perfor-
mance, applications, parallelization, libraries, and the Java environment.

1.1 Related Work

In this section we briefly give some pointers to related work, for details see [1].
For an overview on other computer algebra systems see [5]. Typed computer
algebra systems with own programming languages are described e.g. in [6], [7]
and [8]. Computer algebra systems implemented in other programming languages
and libraries are: in C/C++ [9–11], in Modula-2 [12], in Oberon [13] and in
FORTRAN [14]. Java computer algebra implementations have been discussed in
[15], [16], [17], [18], [19] and [20]. Newer approaches are discussed in [21], [22]
and [23]. The expression of mathematical requirements for generic algorithms in
programming language constructs have been discussed in [24] and [25].

More related work, together with an evaluation of the design, is discussed in
section 3. Due to limited space we have not discussed the related mathematical
work on solvable polynomials, Groebner base and greatest common divisor algo-
rithms, see e.g. [26, 27] for some introduction. This paper contains an expanded,
revised and corrected part of [2].

1.2 Outline

In the next section 2, we give some examples on using the JAS library and give
an overview of the JAS type system for polynomials. Section 3 evaluates the pre-
sented design and compares JAS to other computer algebra systems. In partic-
ular it discusses interfaces as types, generics and inheritance, dependent types,
method semantics, recursive types, design patterns, code reuse, performance,
applications, parallelization, libraries, and the Java development environment.
Finally section 4 draws some conclusions.

T[0] = 1

T[1] = x

T[2] = 2 x^2 - 1

T[3] = 4 x^3 - 3 x

T[4] = 8 x^4 - 8 x^2 + 1

T[5] = 16 x^5 - 20 x^3 + 5 x

T[6] = 32 x^6 - 48 x^4 + 18 x^2 - 1

T[7] = 64 x^7 - 112 x^5 + 56 x^3 - 7 x

T[8] = 128 x^8 - 256 x^6 + 160 x^4 - 32 x^2 + 1

T[9] = 256 x^9 - 576 x^7 + 432 x^5 - 120 x^3 + 9 x

Fig. 1. Chebychev polynomials



2 Introduction to JAS

In this section we show some examples for the usage of the JAS library, and then
discuss the general layout of the polynomial types. Some parts of this section
are similar to the JAS introduction in [3].

2.1 Using the JAS Library

To give a first idea about the usage of the library, we show the computation of
Chebychev polynomials. They are defined by the recursion: T [0] = 1, T [1] = x,
T [n] = 2x × T [n − 1] − T [n − 2] ∈ ZZ[x]. The first ten Chebychev polynomials
are shown in figure 1.

1. int m = 10;

2. BigInteger fac = new BigInteger();

3. String[] var = new String[]{ "x" };

4. GenPolynomialRing<BigInteger> ring

5. = new GenPolynomialRing<BigInteger>(fac,1,var);

6. List<GenPolynomial<BigInteger>> T

7. = new ArrayList<GenPolynomial<BigInteger>>(m);

8. GenPolynomial<BigInteger> t, one, x, x2;

9. one = ring.getONE();

10. x = ring.univariate(0); // polynomial in variable 0

11. x2 = ring.parse("2 x");

12. T.add( one ); // T[0]

13. T.add( x ); // T[1]

14. for ( int n = 2; n < m; n++ ) {

15. t = x2.multiply( T.get(n-1) ).subtract( T.get(n-2) );

16. T.add( t ); // T[n]

17. }

18. for ( int n = 0; n < m; n++ ) {

19. System.out.println("T["+n+"] = " + T.get(n) );

20. }

Fig. 2. Computing Chebychev polynomials

The polynomials have been computed with the Java program in figure 2.
In lines 4 and 5 we construct a polynomial factory ring over the integers, in
one variable "x". This factory object itself needs at least a factory for the cre-
ation of coefficients and the number of variables. Additionally the term order
and names for the variables can be specified. With this information the poly-
nomial ring factory can be created by new GenPolynomialRing <BigInteger>
(fac,1,var), where fac is the coefficient factory, 1 is the number of variables,
and var is an String array of names. In lines 8 to 11 the polynomials for the
recursion base, one and x are created. Both are generated from the polynomial
factory with method ring.getONE() and ring.univariate(0), respectively.
The polynomial 2x is, e.g. produced by the method ring.parse("2 x"). The
string argument of method parse() can be the TEX-representation of the poly-
nomial, except that no subscripts may appear. Note, x2 could also be created



from the coefficient factory by using x.multiply( fac.fromInteger(2) ) or,
directly by x.multiply( new BigInteger(2) ).

In lines 6 and 7 a list T is defined and created to store the computed polyno-
mials. Then, in the for-loop, the polynomials T [n] are computed using the defini-
tion, and stored in the list T for further use. In the last for-loop, the polynomials
are printed, producing the output shown in figure 1. The string representation
of the polynomial object can be created, as expected, by toString().

To use other coefficient rings, one simply changes the generic type parameter,
say, from BigInteger to BigComplex and adjusts the coefficient factory. The
factory would then be created as c = new BigComplex(), followed by new Gen-
PolynomialRing<BigComplex>(c,1,var). This small example shows that this
library can easily be used, just as any other Java package or library.

2.2 JAS Class Overview

The central interface is RingElem (see figure 3, left part) which extends Abelian-
GroupElem with the additive methods and MonoidElem with the multiplicative
methods. Both extend Element with methods needed by all types. RingElem is
itself extended by GcdRingElem, which includes greatest common divisor meth-
ods and StarRingElem, containing methods related to (complex) conjugation.

CextendsRingElem<C>RingElem

CextendsElement<C>Element
CextendsAbelianGroupElem<C>AbelianGroupElem CextendsMoniodElem<C>MonoidElem

CextendsGcdRingElem<C>GcdRingElem CextendsStarRingElem<C>StarRingElem

<<bind>>C�>BigRational

GenPolynomial<BigRational>

CextendsRingElem<C>RingElem

BigRational

CextendsRingElem<C>RingFactory

CextendsRingElem<C>GenPolynomial CextendsRingElem<C>GenPolynomialRing
<<bind>>C�>BigRational

<<bind>>C�>BigRational

Fig. 3. Overview of some algebraic types and of generic polynomials

The interface RingElem defines a recursive type which defines the function-
ality of the polynomial coefficients and is also implemented by the polynomials.
So polynomials can be taken as coefficients for other polynomials, thus defin-
ing a recursive polynomial ring structure. We separate the creational aspects of
ring elements into ring factories with sufficient context information. The mini-
mal factory functionality is defined by the interface RingFactory (see figure 3,
right part). Constructors for polynomial rings will then require factories for the
coefficients so that the construction of polynomials poses no problem.



The RingElem interface (with type parameter C), defines the commonly used
methods required for ring arithmetic, such as C sum(C S), C subtract(C S),
C abs(), C negate(), C multiply(C s), C divide(C s), C remainder(C s),
and C inverse(). In addition to the arithmetic methods defined by RingElem,
there are testing methods such as boolean isZERO(), isONE(), isUnit() and
int signum(). The first three test if the element is 0, 1 or a unit in the respec-
tive ring. The signum() method computes the sign of the element (in case of
an ordered ring). The methods equals(Object b), int hashCode() and int
compareTo(C b) are required by Java’s object machinery. The last method C
clone() can be used to obtain a copy of the actual element.

The RingFactory interface defines the methods C getZERO(), C getONE(),
which create 0 and 1 of the ring, respectively. The creation of the 1 is most
difficult, since for a polynomial it implies the creation of the 1 from the co-
efficient ring, i.e. we need a factory for coefficients at this point. There are
methods to embed a natural number into the ring and create the correspond-
ing ring element, e.g. C fromInteger(long a). Other important methods are C
random (int n), C copy(C c), C parse (String s), and C parse (Reader
r). The random(int n) method creates a random element of the respective
ring. The two methods parse(String s) and parse(Reader r) create ring el-
ements from some external representations. The methods boolean isField(),
isCommutative() or isAssociative() query specific properties of the ring.

Generic polynomials are implemented in class GenPolynomial, which has a
type parameter C that extends RingElem<C> for the coefficient type (see fig-
ure 3, right part). All operations on coefficients, that are required in polyno-
mial arithmetic and manipulation are guaranteed to exist by the RingElem in-
terface. The constructors of the polynomials always require a matching poly-
nomial factory. The generic polynomial factory is implemented in the class
GenPolynomialRing, again with type parameter C extends RingElem<C> (not
RingFactory). The polynomial factory implements the interface RingFactory<C
extends RingElem<C>> so that it can also be used as coefficient factory. The
constructors for GenPolynomialRing require at least the parameters for a coef-
ficient factory and the number of variables of the polynomial ring.

The design of the other types and classes together with aspects of implemen-
tation are discussed in detail in [1].

3 Evaluation

In this section we discuss, without striving for completeness, some key points
of our library and differences to other systems. Due to space restrictions, we
assume some knowledge of [1] in the following, see also [3] and the related work
in the introduction.

3.1 Interfaces as types

In [28, 29] the authors argue, and give counter examples, that a type system
based only on (multiple) inheritance, is not sufficient to implement mathemat-
ical libraries, in particular, it is not sufficient to implement computer algebra
libraries. As a solution they advocate interfaces, called signatures in their paper,
as we find them now in Java. With the aid of interfaces it is possible to define



a abstract type system separate of any implementation types defined by class
hierarchies. This approach was partly anticipated in the Axiom system [6] with
so called categories and domains. A category is a kind of interface, but with the
possibility to give implementations for certain methods, like an Java abstract
class. A domain in Axiom is similar to a Java class. In [30] the necessary flexi-
bility for the type system was achieved by a decoupling of classes from so called
views (interfaces). In defining views, one could however, give arbitrary mappings
for the view method names to the implementing class method names. Java al-
lows only exact matching names, or one has to resort to some facade pattern to
map names during runtime. The definition of the type hierarchy from Element
to RingElem is perfectly suited to abstract from the common characteristics of
coefficients and polynomials to make them exchangeable and inter-operable.

In section 2.4 (solvable polynomials) in [1] a problem appeared with the type
erasure the compiler does for generic types to generate the raw implementation
classes. Further investigation revealed, that this is not a problem of type erasure,
but a feature of any generic object oriented programming language. As, in gen-
eral, a sub-class can not be allowed to implement a generic interface with a type
parameter of the sub-class. Since this would require the compiler to check that
no method of the super class, which is not overwritten in the sub-class, uses a
super class constructor. This is not feasible to check for the compiler and impos-
sible for separately compiled class libraries. In our case of the GenPolynomial
super class we assured by using factory methods of the sub-class GenSolvable-
Polynomial that any super class method returns objects of the sub-class. I.e.
we changed the semantics of the super class methods to return sub-class objects
but a compiler can not suss this. This implies that our proposal to solve this, in
[2], is wrong.

3.2 Generics and inheritance

The first version of the JAS library was implemented without generic types [31].
One obvious reason was, that generics where only introduced to the Java lan-
guage in JDK 1.5. But it was well known from papers, such as [32], that generics
are not necessarily required, when the programming language has, or allows the
construction of a well-designed type hierarchy. In our previous implementation
(up to 2005) we employed a interface Coefficient, which was implemented by
coefficient classes and used in the Polynomial interface. Polynomial also ex-
tends Coefficient and so, polynomials could be used as coefficients of other
polynomials. The Coefficient interface has now become the RingElem inter-
face. However, with such a non-generic approach one eventually looses some type
safety, i.e. one could inadvertently multiply a polynomial with BigInteger co-
efficients by a polynomial with, say BigRational coefficients, and the compiler
could not determine a problem. To prevent this, we had incorporated the name
of the coefficient type in the name of the polynomial type, e.g. RatPolynomial or
IntPolynomial in that release. A second reason for this first design was non exis-
tent coefficient factories, which could construct coefficients, say for the constant
polynomial 1. Although the coefficient specific polynomials, e.g. RatPolynomial,
have been extended from an abstract polynomial base class, e.g. MapPolynomial,
it lead to much duplication of code. With the current generic type parameter
approach we have removed all duplicate code for polynomial implementations.



Moreover the type of the polynomial is clearly visible from the denotation, e.g.
GenPolynomial<BigInteger>, of polynomial variables.

3.3 Dependent types

The problem of dependent types is that we cannot distinguish polynomials in, say
3 variables from polynomials in, say 5 variables from their type. This carves a hole
in the type safety of our library. I.e. the polynomial factories GenPolynomial-
Ring <BigInteger> (c, 3) and GenPolynomialRing <BigInteger> (c, 5)
could produce polynomials with the same type GenPolynomial <BigInteger>,
but will most likely produce a run-time error, when, say, they are added together.
Of course, the method equals() of the factory will correctly determine, that the
rings are not equal, but the compiler is not able to infer this information and we
are not able to denote hints.

This problem also occurs in the class ModInteger and ModIntegerRing. The
type depends on the value of the modulus chosen. I.e. ModIntegerRing(5) and
ModIntegerRing(7) are incompatible, but are denoted by the same type. Al-
though the implementation of arithmetic methods of ModInteger will always
choose the modulus of the first operand and therefore there will not be a run-
time error, but this can lead to wrong results in applications.

The SmallTalk system [30] could use a elegant solution for this problem.
Since types are first class objects, they can be manipulated as any other object
in the language. E.g. one could define the following (in Java like syntax)

class Mod7 = ModIntegerRing(7);
Mod7 x = new Mod7(1);

Now Mod7 is a type, which can be used to define and create new objects.
A minor problem of the same kind occurs with the term order defined in

the polynomial factory, see [1]. It too, could be incompatible at run-time and
this fact it is not expressed in the type. The actual implementation ignores this
problem and arithmetic methods will produce a correct result polynomial, with
a term order chosen from one of its input polynomials. However applications
could eventually be confused by this behavior, e.g. Groebner base calculations.

Other computer algebra systems, e.g. [6], treat the polynomial dependent
type case with some coercion facility. I.e. in most cases it is clear how to coerce
a polynomial in 3 variables to a polynomial in 5 variables by adding variables
with exponent zero or to coerce both to polynomials in 8 variables if variable
names are disjoint.

A type correct solution to the dependent type problem in Java would be,
to introduce an new type for every expected variable number, e.g. Var1, Var2,
Var3, and to use this as additional type parameter for polynomials

GenPolynomialRing<BigRational,Var5>.

The types Var* could be implemented by interfaces or more suitably by exten-
sion of an abstract base class defining an abstract method numberOfVariables
which could be used to query the number of variables at runtime. However,
such a solution is impractical, since the number of variables of polynomials in
applications is often determined at run-time and not during compile time.

How dependent types can correctly be handled in a programming language
by the compiler, is discussed in [33].



3.4 Method semantics

The interface RingElem defines several methods which cannot be implemented
semantically correct in all classes. E.g.

– the method signum() makes no sense in unordered rings,
– the methods divide() and remainder() are not defined, if the divisor is

zero or only of limited value for multivariate polynomials,
– the method inverse() may fail, if the element is not invertible, e.g. for r =

new ModIntegerRing(6), a = new ModInteger(r,3), a.inverse() fails,
since 3 is not invertible in Z6.

More examples for other systems can be found in [34]. We have adopted the pol-
icy to allow any meaningful reaction in these cases. E.g. the method signum() in
BigComplex returns 0 if the number is equal to 0 and a non zero value otherwise.
The case of division by zero is in Java usually handled by throwing a run-time
exception, and so do we. This is meaningful, since such a case is mostly an input
error, which should have been handled by the calling programs.

For inverse(), the situation is slightly different. If the element is zero it is an
error and a run-time exception can be thrown. But in the context of dependent
types there are elements, which are not zero, but can nevertheless not be inverted.
As in the above example 3 is not zero, but is not invertible in Z6. Also matrices
can be non-zero but are eventually not invertible. In Axiom [6] such cases are
handled by returning a special constant "failed", with obvious problems arising
for the type system. In Java we have the mechanism of checked exceptions. So
for inverse(), it should be considered to add a throws clause in the definition,
to make the user aware of some potential problem. We will explore this concept
in future refactorings of the library.

In JAS there are testing methods to determine such cases. E.g. isZERO()
or isUnit() to check if an element is invertible. For isUnit() the computing
time can be as high as the computing time for inverse(), which doubles the
computing time at this point and may not always be practical. In the factories
there are methods to check further conditions. E.g. isField(), to test if the ring
is a field and therefore if all non-zero elements are invertible.

There are proposals in [24, 25] to formalize the semantic requirements for
methods and types, so that the compiler can check them during compilation.
Also Axiom [6] has some capabilities to specify and check method constraints.
In Java we have a rudimentary possibility in the form of assertions to check
constrains at run-time. We have not further explored this subject in JAS yet.

3.5 Recursive types

We have exercised some care in the definition of our interfaces to assure, that
we can define recursive polynomials. First, the interface RingElem is defined as

RingElem<C extends RingElem<C>>.

So the type parameter C can (and must) itself be a subtype of RingElem. For
polynomials we can define a polynomial with polynomials as coefficients

GenPolynomial< GenPolynomial<BigRational> >



In some applications presented in [1], e.g. the Groebner base algorithms, we make
no use of this feature. However, there are many algebraic algorithms which are
only meaningful in a recursive setting. E.g. greatest common divisors or factor-
ization of multivariate polynomials. Although a study of this will be covered by
a future publication, one observation is, that our type system will unfortunately
lead to code duplication. The code for baseGcd() and recursiveGcd() is prac-
tically the same, but because of the recursive type system, the methods must
have different parameter types. Further, by the type erasure problem mentioned
above, they must also have different names.

We have successfully implemented a greatest common divisor package for
multivariate polynomials, using these recursive type features. There is a clean
interface GreatestCommonDivisor with only the most useful methods. These are
gcd(), lcm(), squarefreePart(), squarefreeFactors(), content(), primi-
tivePart(), and resultant(). The generic algorithms then work for all imple-
mented field coefficients.

The abstract class GreatestCommonDivisorAbstract implements the full set
of methods, specified in the interface. Only two methods must be implemented
for the different gcd algorithms. The abstract class should eventually, be refac-
tored to provide an abstract class for PRS algorithms and an abstract class for
the modular algorithms. Details on the problems and solutions of this package
will be covered by a future publication.

3.6 Factory pattern

The usage of the factory pattern to create objects with complex parametrization
requirements is a standard technique in object oriented programming. Surpris-
ingly, it has already been used in the SmallTalk implementation presented in
[30]. Recently this approach was advocated again in [16, 17]. But, otherwise we
see this pattern seldom in computer algebra systems. The mainly used way to
create polynomials or matrices is via constructors or by coercions from general
algebraic expressions [6].

There is a nice application of the factory pattern in the ufd package. The
factory GCDFactory can be used to select one from the many greatest common
divisor implementations. This allows non-experts of computer algebra to choose
the right algorithm for their problem.

GreatestCommonDivisor<C> engine
= GCDFactory.<C>getImplementation( fac );

c = engine.gcd(a,b);

The (static) method getImplementation() constructs a suitable gcd implemen-
tation for the given type. The selection of the getImplementation() method
takes place at compile time. I.e. depending on the desired actual type for C,
different methods are selected. The coefficient factory parameter fac is used at
run-time to check e.g. if the coefficients are from a field, to further optimize the
selection. For the special cases of BigInteger and ModInteger coefficients, the
modular algorithms can be employed.

This factory approach contrasts the approach taken in [24] and [25] to pro-
vide programming language constructs to specify the requirements for the em-
ployment of certain implementations. These constructs would then direct the



selection of the right algorithm. However, the authors conclude, that not all
properties can be captured at compile-time and some tests have to be post
phoned to run-time.

3.7 Code reuse

With the help of generic programming we could drastically reduce the code of
the earlier MAS [12] (and of the SAC-2 [14]) libraries. MAS has three major
polynomial implementations, called distributive and recursive representation,
and univariate dense representation. For each representation there are three
or more implementations. One ‘class’ for integer coefficients, one for rational
number coefficients and one for modular integer coefficients. In JAS there is
only one polynomial class, which works for all implemented coefficients.

In MAS, a so called arbitrary domain polynomial implementation exists. Here,
the coefficients consist of a domain descriptor and a domain value. With the
domain descriptor it was possible to select at run-time the corresponding im-
plementation for the domain values and provide further context information for
the called ‘methods’. 13 coefficient domains have been implemented. Besides the
lack of type safety, the introduction of a new coefficient implementation required
the update of dispatching tables for all methods. The run-time selection of the
implementation added a performance penalty (of about 20%), see [12] and the
references there. With Java we have no performance loss for the generic coeffi-
cients and no need for recoding if new coefficients are introduced in the future.

A particular nice example for code reuse is the computation of e-Groebner
bases, see e.g. [26]. They are d-Groebner bases but with e-reduction instead of
d-reduction. This can be expressed by subclassing with a different constructor.

public class EGroebnerBaseSeq<C extends RingElem<C>>
extends DGroebnerBaseSeq<C> {

public EGroebnerBaseSeq(EReductionSeq<C> red) { ... } }

3.8 Performance

The performance of generic programming implementations in C++, Java and
C# compared to special hand-coded programs is discussed in [35]. As usual
the authors conclude, that hand-coded programs are faster, but diminish the
software engineering benefits. A conclusion, we do not share. For our polynomial
implementation (see [1]), performance is mainly influenced by

1. the performance of coefficient arithmetic,
2. the sorted map implementation and
3. the exponent vector arithmetic.

Coefficient arithmetic of polynomials is based on the Java BigInteger class.
BigInteger was initially implemented by a native C library, but since JDK 1.3
it is implemented in pure Java [36]. The new implementation now has better
performance than the C library. Sorted map implementation is from the Java
collections package, which uses known efficient algorithms for this purpose, and
it is comparable to other libraries, such as the C++ STL. However, we are not
aware of general performance comparisons of the collection frameworks.



The exponent vector implementation is based on Java arrays of longs. It
could be faster by using arrays of ints or shorts as most computations seldom
require polynomials of degrees larger than 216. This would reduce the memory
footprint of a polynomial and so improve cache performance. If Java would
allow elementary types as type parameters, it would be possible to make the
ExpVector class generic, e.g. ExpVector<long> or ExpVector<int>. However,
using objects like Long or Integer as exponents, would imply auto-boxing and
introduce too much performance penalties. To make the library useful for a wide
range of applications we decided to stay with the implementation using longs.

Table 1. JAS polynomial multiplication benchmark

Computing times in seconds on AMD 1.6 GHz CPU.
Options are: coefficient type, term order: G = graded, L = lexicographic, big c =

using the big coefficients, big e = using the big exponents, s = server JVM.

options, system JDK 1.5 JDK 1.6

BigInteger, G 16.2 13.5

BigInteger, L 12.9 10.8

BigRational, L, s 9.9 9.0

BigInteger, L, s 9.2 8.4

BigInteger, L, big e, s 9.2 8.4

BigInteger, L, big c 66.0 59.8

BigInteger, L, big c, s 45.0 45.8

There is a simple benchmark for comparing the multiplication of sparse poly-
nomials in [37]. It times the computation of the product of two polynomials
q = p × (p + 1), with integer coefficients, where p = (1 + x + y + z)20, with
bigger coefficients p = (10000000001(1 + x + y + z))20, or with bigger exponents
p = (1+x2147483647 + y2147483647 + z2147483647)20. The results for JAS are shown
in table 1 and for other systems in table 2. The timings are from [2] and show
that JAS is more than 3 times faster than the old MAS system but also 3.5
times slower than the Singular system. However Singular is not able to compute
the example with bigger exponents. For this example JAS is 45% faster than
Maple, and 65% faster than Mathematica. This shows that JAS (and the Java
VM) matches the performance of general purpose systems. For further details
see the discussion in [2].

3.9 Applications

As an application of the generic polynomials we have implemented some more
advanced algorithms, such as polynomial reduction or Buchbergers algorithm to
compute Groebner bases. The algorithms are also implemented for polynomial
rings over principial ideal domains and Euclidean domains and for solvable poly-
nomial rings (with left and two-sided variants) and modules over these rings. The
performance of these implementations will be covered in a future publication.



Table 2. Polynomial multiplication, other systems

Computing times in seconds on AMD 1.6 GHz CPU and Intel 2.7 GHz.
Options are: coefficient type is rational number for MAS, integer for Singular and

unknown for Maple an Mathematica, big c = using the big coefficients, big e = using
the big exponents, term order G = graded, L = lexicographic.

options, system time @2.7GHz

MAS 1.00a, L, GC = 3.9 33.2

Singular 2-0-6, G 2.5

Singular, L 2.2

Singular, G, big c 12.95

Singular, L, big exp out of memory

Maple 9.5 15.2 9.1

Maple 9.5, big e 19.8 11.8

Maple 9.5, big c 64.0 38.0

Mathematica 5.2 22.8 13.6

Mathematica 5.2, big e 30.9 18.4

Mathematica 5.2, big c 30.6 18.2

3.10 Parallelization

JAS has been implemented with the goal of being thread safe from the beginning.
This is mainly achieved by implementing all algebraic elements by immutable
objects. This avoids any synchronization constructs for the methods at the cost
of some more object creations. We have, however, not studied the impact of this
on the performance.

In the beginning, we had developed some utility classes for easier paralleliza-
tion of the algorithms. In the mean time some classes are no more required, since
equivalent substitutions exist in java.util.concurrent. We have replaced some
of them in the latest refactorings of the library.

In the ufd package there is a nice parallel proxy class, which provides effec-
tive employment of the fastest algorithms at run-time. In the time of multi-core
CPU computers, we compute the gcd with two (or more) different implemen-
tations in parallel. Then we return the result from the fastest algorithm, and
cancel the other still running one. The gcd proxy can be generated from GCD-
Factory.<C>getProxy(). For example in a Groebner base computation with
rational function coefficients, requiring many gcd computations, the fastest was
3610 times the subresultant algorithm and 2189 times a modular algorithm.

3.11 Libraries

The advantage of (scientific) libraries is apparent. Javas [4] success is greatly
influenced by the availability of its comprehensive libraries of well tested and
efficient algorithms. Also languages like Perl or PHP profit greatly from their
comprehensive sets of available libraries. JAS is an attempt to provide a library
for polynomial arithmetic and applications. There are other activities in this
direction, however they are not all open source projects using the GPL license.

The goal of the jscl-meditor [21] project “is to provide a java symbolic com-
puting library and a mathematical editor acting as a front-end to the former.”



jscl has a similar mathematical scope as JAS and we are looking for possibili-
ties to cooperate in future work. The project JScience [23] aims to provide “the
most comprehensive Java library for the scientific community”. The library has
a broader perspective than JAS, in that it wants to support not only mathemat-
ics, but also physics, sociology, biology, astronomy, economics and others. There
is the Orbital library [22], which provides algorithms from (mathematical) logic,
polynomial arithmetic with Groebner bases and optimizations with genetic (sic)
algorithms. The Apache software foundation distributes a numerical mathemat-
ical library as part of the org.apache.commons package [38]. It is a “library
of lightweight, self-contained mathematics and statistics components addressing
the most common problems not available in the Java programming language”.

3.12 Java environment

In [31] we have advocated the usage of standard libraries in favor of special imple-
mentations. In earlier computer algebra systems the creators had to implement
many standard data structures by themselves. But now, we have the situation,
that many of these data structures are available in form of well designed and
tuned libraries, like the Java collection framework or the standard template li-
brary (STL) from C++. With this approach one can save effort to implement
well known data structures again and again. Moreover, one profits from any im-
provements in the used libraries and improvements of the Java virtual machine
(JVM). This has been exemplified by the performance improvements between
JDK 1.5 and JDK 1.6 in section 3.8, table 1. Since Java is 64-bit ready we have
been able to run Groebner base computations in 50 GB main memory.

4 Conclusions

JAS provides a sound object oriented design and implementation of a library
for algebraic computations in Java. For the first time we have produced a type
safe library using generic type parameters in a contemporary programming lan-
guage. With Javas interfaces we are able to implement all algebraic types re-
quired for a computer algebra system. The generic programming of Java allows
a type safe implementation of polynomial classes. It also helped to drastically
reduce code size and facilitates code reuse. Type safety in JAS is only limited
by the dependent type problem, which cannot be avoided in popular contempo-
rary programming languages. With checked and unchecked exceptions we can
model all necessary algebraic semantics of methods. The recursive RingElem
and polynomial design allows the implementation of all important multivariate
polynomial greatest common divisor algorithms. The usage of design patterns,
e.g. the factory pattern for object creation, allows a clean concept for object
oriented algebraic programming. Although object orientation looks strange to
mathematicians, it is state of the art in modern programming languages. The
performance of the library is comparable to general purpose computer algebra
systems, but can not match the performance of special hand tuned systems. We
have demonstrated that a large portion of algebraic algorithms can be imple-
mented in a convenient Java library, e.g. non-commutative solvable polynomials
or greatest common divisors. The parallel and distributed implementations of
Groebner base algorithms draw heavily on the Java packages for concurrent



programming and inter-networking. For the main working structures we built
on the Java packages for multi-precision integers and the collection framework.
The steady improvements of Java and its package implementations, leverage the
performance and capabilities of JAS. A problem with Java’s type erasure was
identified as a general feature of generic object oriented programming languages
and is not specific to Java.

In the future we will implement more of ‘multiplicative ideal theory’, i.e.
multivariate polynomial factorization.
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