
Fostering Interoperability in Java-Based Computer Algebra Software

Heinz Kredel
IT-Center University of Mannheim, Germany

Email: {kredel}@rz.uni-mannheim.de

Abstract—This paper considers interoperability in Java
based computer algebra software. It is well known that inter-
operability in Java software is greatly enhanced by simple but
expressive interfaces. However, there is no commonly agreed
set of interfaces for Java based computer algebra software.
When no common interfaces exist it is required to develop
adapter classes for each pair of different interfaces to achieve
interoperation. We present three existing interfaces from the
Java Algebra System (JAS), from JLinAlg and from Apache
Commons Math. We discuss advantages and problems with
each set of interfaces and define a useful common subset as a
proposal for a future standard.

Keywords-interfaces as types, computer algebra software,
interoperability of libraries

I. INTRODUCTION

One of the success factors for a software eco-system is
the a core set of libraries included with the distribution and
the availability of (third-party) libraries for many application
areas. These factors are for example fulfilled for GNU-Linux
and also for the Java system.

In this paper we study the API design for Java libraries
in the area of computer algebra software. We focus on the
design of generic interfaces and study three examples: the
interfaces found in Apache commons Math, the interfaces
found in JLinAlg and the interfaces in the Java algebra
system (JAS). The requirements for reusable (Java) libraries
can be summarized as follows:

1) separately compiled library: No need for recompila-
tion to use it, like a Java jar-file, or a C shared object
library, not like C++ templates.

2) generic and object oriented: Usable for a (wide)
variety of “basic” objects or data types.

3) statically type safe: Type errors should be spotted
during compilation of the application and at least
during run-time.

4) usable in parallel: Use immutable objects, ensure
thread safety and objects distributable to clusters of
computers.

Because of the JVM run-time system with automatic mem-
ory management it is possible to attempt to design and build
such a library, see e.g. [1].

Generic libraries provide even more advantages, as one
library can compute with the data structures of another
library. For example a library providing algorithms for linear
algebra could be used in a library for general commutative

algebra. Different libraries have different focus on math-
ematical content and useful algorithms. Also the research
and development groups do not have the man-power to
implement every algorithm in all versions in their library.
Such limitations to interoperability are addressed at various
levels:

1) system level: The OpenMath specifications provide
XML interfaces at the highest level [2]. For example
(commercial) computer algebra systems like Maple,
Mathematica or Matlab are monolithic systems which
can interchange information only at the level of the
interaction language.

2) scripting level: The Sage computer algebra software
[3] is written in Python and provides access to several
(open source) computer algebra systems written in
C or C++. For example to Singular [4], Pari, Gap
or Kant. Sage makes use of C/C++ libraries where
possible and else uses the interaction langage of the
respective system. The different interfaces and APIs
of such systems are adapted at the Python level, e.g.
objects for the Pari system are lifted to Sage Python
objects, then mapped to Singular objects to be used
with Singular algorithms.

3) library level: This is the topic of this paper. We want
to provide a common set of interfaces to interoper-
atively use the JAS library, [5], [6], [7] the Apache
Commons Math library [8] and the JLinAlg library
[9].

A. Related Work

The related work published on type systems for com-
puter algebra or abstract data type (ADT) approaches to
computer algebra has been summarized in [1], [10]. Type-
safe design considerations in computer algebra are mostly
centered around the axiom computer algebra system and are
described, e.g. starting with [11], [12]. See also the work on
the Magma computer algebra system, e.g. [13]. Type-safe
design considerations in computer algebra are described in
[14], [15], [11], [16], [17]. Generic programming issues are
discussed for example in [18], [19], [20] and the references
therein. Further related work is mentioned in the paper as
required.



B. Outline of the paper

In section 2 we introduce the interfaces and examples of
their implementing classes of the three systems. Then section
3 we discuss advantages of the approaches and propose a
common library usable by all systems. The last section 4
draws some conclusions.

II. INTERFACES AND EXAMPLE CLASSES

Each library defines a set of interfaces taylored to the
respective needs and design. We concentrate the discusssion
on the topic of ring respective field interfaces which are
central for interoperation.

All interfaces in the discussed projects distinguish be-
tween elements of an algebraic structure and factories to
create such elements.

A. Apache Commons Math (ACMath)

As the library concentrates on linear algebra it consideres
elements from fields and not more general rings. The in-
terfaces are FieldElement and Field for the factory
class, see figure 1. The methods defined are very mini-
mal, only the methods add(), subtract, multiply()
and divide() for the ring operations +, -, *, /
are defined. The last method throws an Arithmetic-
Exception for the case of a divison of zero. The factory
only defines the methods getZero() and getOne().
The intefaces take a type parameter T, which is not further
restricted.

This minimalistic design is described in [8] as “(Apache
Commons Math) emphasizes small, easily integrated compo-
nents rather than large libraries with complex dependencies
and configurations.”

If one looks at an implementing class, for example
the rational numbers in classes BigFraction and the
factory BigFractionField, there are more interfaces
and classes implemented. First, the interfaces Comparable
and Serializable are implemented. Second the class
Number is extended, which mandates conversion methods,
like intValue(). In the implementation the methods
defined in the interface are overloaded with four different
parameter types: the class itself, the class BigInteger
and the primitive types int and long. These overloaded
methods are, however, not reflected in the interface. Also
the methods pow() for exponentiation are not reflected
in the interface. The selectors getDenominator() and
getNumerator() are not meaningful in the interface. The
converting methods bigDecimal() should eventually be
defined in the interface.

B. JLinAlg

The interface IRingElement, see figure 2, for ring ele-
ments defines the methods add(), subtract(), mult-
iply() and divide(), moreover there is a method
inverse() to compute inverses in the respective rings.

T
«interface»
Field

+ getZero()
+ getOne()

BigFractionField

+ getInstance() : BigFractionField
+ getOne() : fraction.BigFraction
+ getZero() : fraction.BigFraction

T
«interface»
FieldElement

+ add(a : T)
+ subtract(a : T)
+ multiply(a : T)
+ divide(a : T)
+ getField() : Field<T>

«interface»
Serializable

«interface»
Comparable

Number

BigFraction

+ getReducedFraction(numerator : int, denominator : int) : BigFraction
+ abs() : BigFraction
+ add(bg : BigInteger) : BigFraction
+ add(i : int) : BigFraction
+ add(l : long) : BigFraction
+ add(fraction : BigFraction) : BigFraction
+ bigDecimalValue() : BigDecimal
+ bigDecimalValue(roundingMode : int) : BigDecimal
+ bigDecimalValue(scale : int, roundingMode : int) : BigDecimal
+ divide(bg : BigInteger) : BigFraction
+ divide(i : int) : BigFraction
+ divide(l : long) : BigFraction
+ divide(fraction : BigFraction) : BigFraction
+ equals(other : Object) : boolean
+ getDenominator() : BigInteger
+ getDenominatorAsInt() : int
+ getDenominatorAsLong() : long
+ getNumerator() : BigInteger
+ getNumeratorAsInt() : int
+ getNumeratorAsLong() : long
+ hashCode() : int
+ multiply(bg : BigInteger) : BigFraction
+ multiply(i : int) : BigFraction
+ multiply(l : long) : BigFraction
+ multiply(fraction : BigFraction) : BigFraction
+ negate() : BigFraction
+ percentageValue() : double
+ pow(exponent : int) : BigFraction
+ pow(exponent : long) : BigFraction
+ pow(exponent : BigInteger) : BigFraction
+ pow(exponent : double) : double
+ reciprocal() : BigFraction
+ reduce() : BigFraction
+ subtract(bg : BigInteger) : BigFraction
+ subtract(i : int) : BigFraction
+ subtract(l : long) : BigFraction
+ subtract(fraction : BigFraction) : BigFraction
+ getField() : org.apache.commons.math.fraction.BigFractionField

Figure 1. Apache Commons Math Interfaces

Further methods are negate() and abs() to compute
the additive inverse and the absolute value. Aditionally there
are predicates isZero() and isOne(). Then there are
additional comparison methods lt(), gt(), le() and
ge(). Further interessting methods are norm() to compute
the norm and apply() to apply a unary-function of the
element.

The interface IRingElementFactory for the ring
factory defines the methods to create elements, like one(),
zero() and m_one() for minus one. Then there are
several methods to construct random elements according
to several options in the methods randomValue() and
gaussianRandomValue(). Then there are some conver-
sion methods, called get(), to convert elements of other
types to this ring. Finally there are methods to construct
arrays getArray() and methods to convert vectors and
matricies convert(). The interfaces take a type paramter
RE which is restricted to IRingElement.

The interfaces of JLinAlg are accompanied by abstract
classes RingElement and RingElementFactory. In
RingElement the predicates are implemented with the
help of the equals() method and the comparisons are
implemented by the compareTo() method. Further, sub-



RE
RingElement

+ isZero() : boolean
+ subtract(val : RE)
+ isOne() : boolean
+ equals(obj : Object) : boolean
+ apply(fun : MonadicOperator<RE>)
+ norm()
+ lt(val : RE) : boolean
+ gt(val : RE) : boolean
+ le(val : RE) : boolean
+ ge(val : RE) : boolean
+ divide(SuppressWarnings : @)
+ invert()

RE
«interface»

IRingElementFactory

+ getArray(size : int) : RE[]
+ getArray(rows : int, columns : int) : RE[][]
+ one()
+ zero()
+ m_one()
+ get(o : Object)
+ get(i : int)
+ get(d : long)
+ get(d : double)
+ gaussianRandomValue(random : Random)
+ randomValue(random : Random)
+ randomValue(min : RE, max : RE)
+ gaussianRandomValue()
+ randomValue()
+ randomValue(random : Random, min : RE, max : RE)
+ convert(from : Vector<?extends IRingElement>) : Vector
+ convert(from : Matrix<?extends IRingElement>) : Matrix

RE
«interface»

IRingElement

+ isZero() : boolean
+ add(other : RE)
+ subtract(val : RE)
+ negate()
+ isOne() : boolean
+ multiply(other : RE)
+ equals(obj : Object) : boolean
+ compareTo(o : RE) : int
+ apply(fun : MonadicOperator<RE>)
+ abs()
+ norm()
+ lt(val : RE) : boolean
+ gt(val : RE) : boolean
+ le(val : RE) : boolean
+ ge(val : RE) : boolean
+ invert()
+ divide(val : RE)
+ getFactory()

RE
RingElementFactory

+ getArray(size : int) : RE[]
+ getArray(rows : int, columns : int) : RE[][]
+ one()
+ zero()
+ m_one()
+ get(o : Object)
+ get(i : int)
+ get(d : double)
+ gaussianRandomValue(random : Random)
+ randomValue(random : Random)
+ randomValue(min : RE, max : RE)
+ randomValue(random : Random, min : RE, max : RE)
+ convert(from : Matrix<?extendsIRingElement>) : Matrix
+ convert(from : Vector<?extendsIRingElement>) : Vector

Figure 2. JLinAlg Interfaces

traction is implement with the help of negation and addi-
tion. The methods divide() and inverse() provide
implementations which throw exeptions if not overwritten
and throw the execption DivisionByZeroException.
The factory provides a default implementation for get()
conversion method with the help of a string representation
and implement the convert() methods with the help of
get().

C. Java Algebra Aystem (JAS)

The interfaces of JAS, see figure 3, for rings RingElem
are extended from more basic interfaces, namely Abelian-
GroupElem and MonoidElem, which in turn both extend
Element. The interfaces are generic and take a type para-
meter C which is restricted to the respective interface.

The Element interface is the top of the JAS interface
hierarchy and extends itself the Java interfaces Clonable,
Comparable and Serializable. Besides the methods
mandated by the super interfaces, the Element interface
defines the method factory() to obtain the factory and
and toScript() to get a string representation which is
suitable as input to a scripting language like (J/P)ython and
(J)Ruby.

The interface AbelianGroupElem defines the commu-
tative additive methods sum(), subtract(), negate()
and abs(). The predicate isZERO() tests if an element
is zero and the method signum() computes the sign of an
element. The interface MonoidElem defines the, eventually
non-commutative, multiplicative methods multiply(),

divide(), inverse() and remainder(). The pred-
icate isONE() tests of the one element of the ring and
isUnit() determines if the element is invertible in the
ring. The interface RingElem extends the just described
interfaces and adds two new methods gcd() and egcd()
for the computation of the (extended) greatest common
divisor. The interface FieldElem extends RingElem and
is empty, as all required methods are already defined.

The factory interface ElementFactory at the top of
the JAS factory interface hierarchy defines conversion meth-
ods fromInteger() from integers and parse() from
strings. Then there are methods to create random elements,
method random(), and the generators of the ring, method
generators(). Method toScript() provides a string
representation which is suitable as input to a scripting
language like (J/P)ython and (J)Ruby. Finally there is a
predicate isFinite() to test if the respective ring is finite
or infinite.

The interface AbelianGroupFactory just defines
the method getZERO() to obtain the neutral element.
The interface MonoidFactory defines the method get-
ONE() to obtain the neutral element. The predicates is-
Commutative() and isAssociative() determine if
the respective ring is commutative and associative. The
interface RingFactory defines the predicate isField()
to determine if the respective ring is already a field. The
method characteristic() obtains the characteristic of
the ring. The FieldFactory interface is again empty.

III. COMPARISON AND PROPOSAL

All libraries provide (at least) some generic algorithms,
which are written using Java 5 type parameters for “basic”
algebraic objects defined to implement an interface. The
basic concepts of the designs are not so different. E.g. the
set of interfaces of each system uses a split design into the
elements of the algebraic structure and a factory object,
which are used to generate or construct elements of the
structure.

Regarding the size of each set of interfaces the most
simple is defined in Apache Commons Math. More elaborate
methods are defined in JLinAlg and most comprehensive set
is defined in JAS.

The libraries have different targets: Apache commons
math focuses on linear algebra over commutative fields
of charactristic zero. JLinAlg has its focus also on linear
algebra but considers commutative fields of arbitrary char-
acteristic. JAS has its focus on more general commutative
and non-commutative (non-linear) algebras.

Remark: The name add() for the addition of ring /
field elements is not lucky. The ring / field elements are
implemented and designed as immutable objects. However,
the method add() is used in the Java collection framework
as a mutable method. It modifies a collection by adding a
further object to it. When working with lists of ring / field



C
«interface»

AbelianGroupFactory

+ getZERO()

C
«interface»

MonoidFactory

+ getONE()
+ isCommutative() : boolean
+ isAssociative() : boolean

C : FieldElem
«interface»

FieldElem

C
«interface»

FieldFactory

«interface»

Serializable

C
«interface»

RingFactory

+ isField() : boolean
+ characteristic() : BigInteger

«interface»

Cloneable
«interface»

Comparable

1

1

1

1

1
1

C : Element
«interface»

Element

+ equals(b : Object) : boolean
+ hashCode() : int
+ compareTo(b : C) : int
+ factory() : ElemFactory<C>
+ toScript() : String
+ toScriptFactory() : String

C : Element
«interface»

ElemFactory

+ generators() : List<C>
+ isFinite() : boolean
+ fromInteger(a : long)
+ fromInteger(a : BigInteger)
+ random(n : int)
+ random(n : int, random : Random)
+ copy(c : C)
+ parse(s : String)
+ parse(r : Reader)
+ toScript() : String

C : AbelianGroupElem
«interface»

AbelianGroupElem

+ isZERO() : boolean
+ signum() : int
+ sum(S : C)
+ subtract(S : C)
+ negate()
+ abs()

C : MonoidElem
«interface»

MonoidElem

+ isONE() : boolean
+ isUnit() : boolean
+ multiply(S : C)
+ divide(S : C)
+ remainder(S : C)
+ inverse()

C : RingElem
«interface»

RingElem

+ gcd(b : C)
+ egcd(b : C) : C[]

Figure 3. JAS Interfaces

elements it is somewhat likely to confuse the add() of a
ring element with an add() of a list by forgetting to assign
the return value of a ring add() to a ring variable. As this
made up some serious and hard to find bugs in JAS it was
decided to use the name sum() for this purpose.

There is a trade-off in the number of methods in an
interface: More methods in the interface place a burden on
the implementor of the classes as more methods must be
implemented. Missing methods in the interface will lead to
case distinctions at runtime or can even break the generic
design of the library.

In this respect the interfaces of ACMath are too limited
as they define too few methods. As the implementations of
ACMath classes show, they see the need for more methods,
like pow(), and the need to extend further interfaces and
classes from Java. Note, that pow() only depends on the
field methods, so it could already be implemented in the in-
terface. This is at the moment possible with so called ’traits’
in Scala [21] and used in ScAS [22]. This will eventually
be also possible in Java 8 with default implementations of
interface methods.

JLinAlg defines a more detailed set of methods. For ring
elements the difference only in the norm() and apply()
methods. norm() is important for complex number struc-
tures, together with an conjugate() method, and should
eventually go to an additional ComplexElem interface
(or StarRingElem as it is called in JAS). JLinAlg also
defines more methods for the factories, like the conversions

get() and convert() plus some more elaborate methods
for random element generation.

The JAS interfaces provide the most mature selection of
definitions which have proven to be required within the last
6 years. JAS started with a small set of method definitions
like ACMath, but was extended in the last years as the
library growed and more algorithms for various applications
became integrated. For example isFinite() is required
if infinite fields of finite characteristic have to be worked
with. characteristic() is required if algorithms for
finite fields appear in the library. The predicates isCommu-
tative(), isAssociative() and isField() are
required in generic algorithms, if the library will not only
handle infinite commutative fields. The conversion methods
fromInteger() and parse() are similar to methods
from JLinAlg and should eventually be changed to a more
general concept. For example with an overloaded method
like valueOf() for strings, integers or other related ele-
ments, e.g. occuring in embeddings.

As it should be possible to transport algebraic ojects over
a network to different computers, we recomend that the in-
terfaces should extend the Java interface Serializable.
So we can ensure interoperation in a distributed environ-
ment. We also recomend that the interfaces extend the Java
interfaces Clonable and Comparable. This ensures that
the algebraic objects can be used efficiently together with the
Java collections framework, for example they can be used
as keys in sorted maps.

For the interoperation between JAS and ACMath as well
as for the interoperation of JAS and JLinAlg we have written
adapter classes. These adaper classes just implement the
respective interface and delegate the method call to a native
object from the respective adapter pair. For a greater number
of systems this is certainly an approach which does not scale
well. There is also a run-time overhead for the delegation,
however we have not meassured the computing time to study
this case in more detail.

So we propose to use revised JAS interfaces as a common
base set of interfaces. It provides a proven set of useful
methods which allow generic implementations for a wide
range of rings. The burden to implement the predicates for
rings, is not high as in many cases it should be possible just
to return a truth value without further computation. Whether
the interfaces should be defined in flat form as in JLinAlg
or ACMath or in structured from as in JAS remains to be
decided. This set of interfaces could very well have its home
at the Apache Commons project.

IV. CONCLUSIONS

We have presented the interfaces from three computer
algebra libraries, namely from the Java Algebra System
(JAS), from JLinAlg and from Apache Commons Math.
We discussed the advantages and problems with each set



of interfaces and defined a useful subset as a proposal for a
future standard.

Acknowledgments

We thank our colleagues Thomas Becker, Wolfgang K.
Seiler, Thomas Sturm, Raphael Jolly, Axel Kramer, Sherm
Ostrowsky, and others for various discussions on the design
of and the requirements for JAS and ScAS.

REFERENCES

[1] R. Jolly and H. Kredel, “Generic, type-safe and object
oriented computer algebra software,” in Proc. CASC 2010.
Springer, LNCS 6244, 2010, pp. 162–177.

[2] OpenMath Consortium, “OpenMath, version 2.0,” OpenMath
Consortium, Tech. Rep., 2004, http://www.openmath.org/
standard/ om20-2004-06-30/ omstd20html-0.xml, accessed
Jan 2010. [Online]. Available: http://www.openmath.org/,
accessed Jan 2010

[3] W. Stein, SAGE Mathematics Software, The SAGE Group,
since 2005, http://www.sagemath.org, accessed Oct 2011.

[4] G. Greuel, G. Pfister, and H. Schönemann, Singular - A
Computer Algebra System for Polynomial Computations. in
Computer Algebra Handbook, Springer, 2003, pp. 445–450.

[5] H. Kredel, “The Java algebra system (JAS),” http://krum.-
rz.uni-mannheim.de/jas/, Tech. Rep., since 2000.

[6] ——, “On a Java Computer Algebra System, its perfor-
mance and applications,” Science of Computer Programming,
vol. 70, no. 2-3, pp. 185–207, 2008.

[7] ——, “Unique factorization domains in the Java computer
algebra system,” in Automated Deduction in Geometry, ser.
Lecture Notes in Computer Science, T. Sturm and C. Zengler,
Eds. Springer, 2011, vol. 6301, pp. 86–115. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-21046-4 5

[8] Apache Software Foundation, “Commons-Math: The Jakarta
mathematics library,” http://commons.apache.org/, accessed
Nov 2009, Tech. Rep., 2003-2010.

[9] A. Keilhauer, S. D. Levy, A. Lochbihler, S. Ökmen, G. L.
Thimm, and C. Würzebesser, “JLinAlg: a Java-library for
linear algebra without rounding errors,” http:// jlinalg.source-
forge.net/, accessed Jan 2010, Tech. Rep., 2003-2010.

[10] R. Jolly and H. Kredel, “Algebraic structures as typed ob-
jects,” in Proc. CASC 2011. Springer, LNCS 6885, 2011,
pp. 294–308.

[11] R. Jenks and R. Sutor, Eds., axiom The Scientific Computation
System. Springer, 1992.

[12] S. Watt, “Aldor,” in Computer Algebra Handbook, Springer,
2003, pp. 265–270.

[13] W. Bosma, J. J. Cannon, and C. Playoust, “The Magma
algebra system I: The user language,” J. Symb. Comput.,
vol. 24, no. 3/4, pp. 235–265, 1997.

[14] H. J. Davenport and B. M. Trager, “Scratchpad’s view of
algebra I: Basic commutative algebra,” in Proc. DISCO’90.
Springer LNCS 429, 1990, pp. 40–54.

[15] H. J. Davenport, P. Gianni, and B. M. Trager, “Scratchpad’s
view of algebra II: A categorical view of factorization,” in
Proc. ISSAC’91, Bonn, 1991, pp. 32–38.

[16] H. J. Davenport, “Abstract data types in Computer Algebra,”
in Proc. MFCS 2000. Springer LNCS 1893, 2000, pp. 21–35.

[17] M. Bronstein, “Sigmait - a strongly-typed embeddable com-
puter algebra library,” in Proc. DISCO 1996. University of
Karlsruhe, 1996, pp. 22–33.

[18] D. Musser, S. Schupp, and R. Loos, “Requirement oriented
programming - concepts, implications and algorithms,” in
Generic Programming ’98: Proceedings of a Dagstuhl Sem-
inar. LNCS 1766, Springer, 2000, pp. 12–24.

[19] S. Schupp and R. Loos, “SuchThat - generic programming
works,” in Generic Programming ’98: Proceedings of a
Dagstuhl Seminar. LNCS 1766, Springer, 2000, pp. 133–
145.

[20] L. Dragan and S. Watt, “Performance Analysis of Generics
in Scientific Computing,” in Proceedings of Seventh Interna-
tional Symposium on Symbolic and Numeric Algorithms for
Scientific Computing. IEEE Computer Society, 2005, pp.
90–100.

[21] Martin Odersky, “The Scala programming language,” http://
www.scala-lang.org/, accessed June 2011, Tech. Rep., 2003-
2011.

[22] R. Jolly, “Object Scala found - a JSR223-compliant version of
the Scala interpreter,” in Scala Days 2011, 2011, p. to appear.


