# # jruby examples for jas. # \$Id: trinks.rb 4311 2012-12-02 12:22:28Z kredel \$ # #load "examples/jas.rb" require "examples/jas" # trinks 6/7 example # QQ = rational numbers, ZZ = integers, CC = complex rational numbers, GF = finite field #r = PolyRing.new( GF(19),"B,S,T,Z,P,W", PolyRing.lex); #r = PolyRing.new( GF(1152921504606846883),"B,S,T,Z,P,W", PolyRing.lex); #r = PolyRing.new( GF(2**60-93),"B,S,T,Z,P,W", PolyRing.lex); #r = PolyRing.new( CC,"B,S,T,Z,P,W", PolyRing.lex); #r = PolyRing.new( ZZ,"B,S,T,Z,P,W", PolyRing.lex); r = PolyRing.new( QQ,"B,S,T,Z,P,W", PolyRing.lex); puts "Ring: " + r.to_s; puts; # sage like: with generators for the polynomial ring one,B,S,T,Z,P,W = r.gens(); # capital letter variables not automaticaly included #one,I,B,S,T,Z,P,W = r.gens(); f1 = 45 * P + 35 * S - 165 * B - 36; f2 = 35 * P + 40 * Z + 25 * T - 27 * S; f3 = 15 * W + 25 * S * P + 30 * Z - 18 * T - 165 * B**2; f4 = - 9 * W + 15 * T * P + 20 * S * Z; f5 = P * W + 2 * T * Z - 11 * B**3; f6 = 99 * W - 11 *B * S + 3 * B**2; f7 = 10000 * B**2 + 6600 * B + 2673; #f7 = B**2 + 33/50 * B + 2673/10000; # fractions work with ruby #puts "f1 = " + f1.to_s; F = [ f1, f2, f3, f4, f5, f6, f7 ]; # smaller, faster #F = [ f1, f2, f3, f4, f5, f6 ]; # bigger, needs more time puts "F = " + F.map { |f| f.to_s }.join(","); puts f = r.ideal( "", F ); puts "Ideal: " + f.to_s; puts; #startLog(); rg = f.GB(); puts "seq Output:", rg; puts; rg = f.parGB(2); puts "par Output:", rg; puts; terminate(); return # if using ZZ coefficients f.distClient(); # starts in background, needs socket permission rg = f.distGB(2); #puts "dist Output:", rg; #puts; f.distClientStop(); # stops them terminate();